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Abstract

Three different automatic model selection algorithms are described. Various criteria for the eval-

uation of model selection algorithms are outlined including the gauge, potency and conditional

mean squared errors. Monte Carlo simulations are used to evaluate the algorithms across three

different states of nature. The algorithms are compared based on their ability to select relevant

variables, exclude irrelevant variables and the accuracy of their parameter estimates. They are also

compared to the benchmarks or ‘best case scenarios’ providing a measure of the costs of search and

inference. A separate application of automatic model selection for nowcasting is then considered.

The algorithms are used to nowcast and forecast the rate of influenza-like illness in the United

States using Google search queries.
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Chapter 1

Introduction

At the moment, big data is a big deal. Technology developed in the past few decades means

that more information than ever before is being collected. Management, storage and processing

capabilities have advanced rapidly in recent years. There is a huge amount of information and

potential in this data.

In many fields, one of the biggest buzzwords is machine learning. Broadly, machine learning

consists of techniques, algorithms, etc., which allow us to ‘learn’ from the data. Machine learning

discovers patterns and makes predictions, with minimal conditions. Given that the world has

more data than most people know how to handle, computers end up doing most of the work and

discovery, making understanding data and utilizing it to its fullest potential much easier.

Economic modelling stands to benefit immensely from big data and the ideas in machine

learning. More data can provide a clearer picture of the world, and should contribute to a clearer

understanding of its dynamics and complexities. However, while data has become increasingly

available, the implementation of the theory regarding how to actually use all this data is still

catching up. The field of economics is still figuring out how to exploit big data.

The reason why economics hasn’t enthusiastically ‘jumped on the machine learning train’ lies

in the fact that econometrics is fundamentally concerned with inference and machine learning is

primarily related to finding patterns and making predictions. This means that the objective in

machine learning algorithms is for example to minimize the prediction error, not to necessarily

understand how the predictions are being formed. For economists however, there are three main

uses for economic modelling: forecasting, policy and modelling. In the modelling and policy

worlds economists are concerned with what drives a particular variable. Standard econometrics

allows economists to test models, draw conclusions, and provide information on the underly-

ing process driving a particular variable. This is valuable because it then allows a researcher,

government, business, etc., to understand the impact of changing a ‘driving force’ on a given

variable.

For economic modellers and policy makers an important question arises. How can we use
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big data to our advantage without foregoing inference? This is where automatic model selection

becomes a very useful tool.

As its name would suggest, automatic model selection is using algorithms to automatically

select models. Very generally, model selection algorithms work to find the ‘best’ model (according

to a particular set of criteria, objective function, etc.) of a particular dependent variable, given

a set of potential explanatory variables. This is incredibly useful; the computer is performing

tests and doing the work that a researcher might normally do herself.

It is important to point out that there are differences between model selection and forecasting.

The goal of model selection is to select a model which is as close to the data generating process

(DGP) as possible. The goal of forecasting is to produce models which have minimal prediction

error. Because the world is non-stationary, full of correlations and structural breaks these two

goals do not necessarily coincide. Standard machine learning techniques can generally only be

applied to forecasting and prediction problems, which highlights the need for techniques focussed

on the model selection problem to be developed and analyzed.

The goal of this thesis is to study, evaluate and compare the performance of model selec-

tion algorithms under different states of nature. The state of nature refers to the correlation

structure of the variables being considered in the model. Three different algorithms are tested:

Autometrics, the Lasso and Bayesian Structural Time Series. This is the first time a compari-

son between these three algorithms has been undertaken. While studies do exist which feature

pairwise comparison, these are rare and do not consider the various states of nature considered

here. Additionally, the studies that do exist do not endeavor to compare the algorithms using

the metrics used here and tend to focus on the predictive power (i.e. accuracy of forecasts)

of model selection algorithms. In this thesis Monte Carlo simulations are used so the DGP is

known, which allows the algorithms to be compared using metrics which are more relevant to

the model selection problem.

The thesis is structured as follows: Chapter 2 describes the algorithms included in this

study, Chapter 3 tests the algorithms in the context of Monte Carlo simulations, Chapter 4 is an

empirical application of automatic model selection building off the Google Flu Trends application

and Chapter 5 concludes.
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Chapter 2

The Algorithms

This chapter outlines Autometrics, the Lasso and Bayesian Structural Time Series, the three

different automatic model selection algorithms which are tested and compared in this thesis.

The difficulties and dangers associated with the ‘black box’ treatment of econometric software

by econometric practitioners is also examined.

2.1 Autometrics

Autometrics is an application of general-to-specific (GETS) model selection. GETS model se-

lection begins with the formulation of an initial model, which includes all variables which the

modeller believes may be regressors in the final model. The model space is the set of all pos-

sible models; in theory, for k variables there are 2k possible models to evaluate and compare.

GETS algorithms search through the model space by systematically eliminating variables, and

estimating the resulting models. Various tests are conducted as the algorithm progresses through

the model space, which ensure that not too much information is being lost relative to the initial

model, and that the estimated models are statistically well-behaved. Often there will be multiple

models that the algorithm deems to be sufficiently informative and well-behaved. Therefore a tie-

breaking criteria is often required to select the final model. An overview of the GETS procedure

can be found in the General-to-specific modelling section of Hendry and Doornik (2014).

Following work done by Hoover and Perez (1999), and Hendry and Krolzig (1999 and 2005),

Autometrics is a third implementation of a GETS modelling procedure. While all GETS al-

gorithms have the same goal, the implementation varies. The following four features broadly

describe the main components of GETS model selection, and are the four main ways in which

various GETS algorithms may differ in their approach:

1. Formulation of a General Unrestricted Model (GUM).

2. Path search through the model space.
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3. Tests of resulting models: both statistical validity tests and encompassing tests.

4. Tie-breaker for resulting models.

With these in mind, Autometrics consists of four main components, or broadly, ‘steps’. First, the

GUM is formulated and becomes the initial model. It is up to the researcher to determine which

variables are included in the GUM. The GUM is estimated and must pass a series of diagnostic

tests and also provide sufficient information about the variable being modelled. Included in

the battery of tests are normality, residual correlation, residual ARCH, heteroskedasticity and

in-sample Chow tests. The modeller has the choice to set the p-value for these tests, and if the

initial model fails, this can be adjusted. A detailed treatment of the Autometrics algorithm can

be found in Doornik (2009).

Consider the following simple example, taken from Doornik (2009). A modeller thinks vari-

ables A, B, C and D may be relevant for modelling variable Y, but is unsure if he should include

all four (obviously this a very simple example and in practice a modeller would be unlikely to

use Autometrics to determine the model). In this case, the GUM would be the model composed

of variables A, B, C and D. This model is required to pass tests which ensure it is statistically

well-behaved, before the algorithm will proceed. The significance level for these tests is set by

the modeller and is denoted pd.

The second component in the Autometrics algorithm is a tree search through the model

space. The ideas of tree search can be more easily understood with reference to Figure 2.1.

The initial model, the GUM, is estimated. Then t-statistics for all the potential regressors

are calculated, and from these values, the variables are ranked from least significant to most

significant. Continuing with the same example, the GUM is the model which includes variables

A, B, C and D, and is depicted in the diagram as node ABCD. Suppose that variable A is

the least significant, followed by B, C, then D. The tree search begins by eliminating the least

significant variable and estimating the resulting model. In the example, this corresponds to

moving to node BCD. Model BCD is backtested with respect to the GUM via a simple F -

test, where BCD is the restricted model and ABCD is the unrestricted model. If backtesting

does not reject model BCD, the next least significant variable, which is B in the example, is

eliminated and the resulting model is estimated and backtested with respect to the GUM. This

continues until either a model fails with backtesting or until there are no more variables to

eliminate. Once either of these occurs, the search continues by backtracking through the tree

until a subbranch that has not been explored fully is reached. In the example, once model D is

estimated and tested, the algorithm backtracks to model CD, then continues by eliminating D

and estimating model C. The algorithm then backtracks to model BCD (since all subbranches

from model CD have been explored) and continues by eliminating variable C, since after B,

this is the least significant variable. The algorithm continues in this way, and if no model ever

failed with respect to backtesting, all 2k models would be estimated. However, as mentioned,

estimating and testing all 2k models becomes computationally infeasible very quickly. There

are several techniques Autometrics utilizes to improve on its computational efficiency: namely
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Figure 2.1: An example of tree search
Source: Doornik (2009)

pruning, bunching, chopping and model contrasts:

• Pruning: If a model fails after the deletion of one variable (either as a result of backtesting,

or because of diagnostic tests) then all models emanating from this branch can be ignored.

In the example, if deletion of variable A causes model BCD to fail, then all the models

in subbranch BCD can be ignored. This process is called pruning. No variable with

significance level less than pa, which is the main Autometrics p-value and is set by the

user, can be deleted from the model.

• Bunching: Variables are grouped together in bunches and simultaneously deleted from the

model. If the resulting model passes both backtesting and all diagnostic tests, then all of

the subbranches leading away from these variables can be deleted. If variables are bunched

together, deleted and the resulting model fails the tests, then a smaller bunch is deleted

and the resulting model is tested. This continues until a model passes the tests or until the

number of variables in a ‘bunch’ equals 1. In the example, beginning at node BCD, if BC

were sufficiently insignificant to be bunched together, the resulting model would include

just D. If this model passes, then any model including B and C can be ignored. The amount

of bunching is determined by pb, and by default pb = max{ 1
2p

1/2
a , p

3/4
a }.

• Chopping: If a variable is ‘highly insignificant’, all models which include it can be ignored.

In the example, if A is sufficiently insignificant, then any models which include it are not

estimated. Chopping is governed by p-value pc , and by default, pc = pb.

• Model Contrasts: A terminal model is one that cannot be reduced any further. Once a

terminal model has been found, it is possible to determine which variables must be deleted
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in order to end up with a different model. Any models which include these variables can

be ignored.

To summarize, the second component of the algorithm is a tree search through the model

space, which involves systematically deleting variables and estimating the resulting models.

Pruning, bunching, chopping and model contrasts are used in order to ignore certain branches

of the tree, which greatly improves computational efficiency.

The third component in the algorithm is testing. As the algorithm progresses through its

tree-search, tests are conducted. There are two types of tests: backtesting with respect to the

GUM and diagnostic tests which evaluate if the model is statistically well-behaved. Backtesting

with respect to the GUM, often just referred to as backtesting, occurs each time a variable (or a

bunch of variables) is deleted and exists to ensure that the deletion of a variable is not causing

significant information to be lost. Backtesting is done with an F -test, is governed by pd and by

default pd = pa. If backtesting fails it means that the eliminated variable contains non-negligible

information about the variable being modelled. Models extending from a subbranch which fails

with backtesting therefore are not considered.

Diagnostic testing is conducted differently, as it is computationally expensive and not efficient.

Autometrics avoids this by only performing diagnostic tests once a terminal model has been

found. If the terminal model fails diagnostic tests, then the algorithm backtracks along the

branch that led to this model, testing each model until one is found which passes the diagnostic

tests. This then becomes the terminal model. This means that insignificant variables can be

retained.

The fourth component of Autometrics is using an iterative procedure to select the final model.

Once the tree search is done, there are likely to be multiple terminal models. The union of all

terminal models is found and each of the terminal models is backtested with respect to this union.

Any model which fails with respect to backtesting is deleted, and the union of the remaining

models becomes the GUM. The same tree search and testing procedure as outlined above is

then performed, with this new GUM as the starting point. This iterative procedure continues

until the union of terminal models in one iteration is the same as that in the previous iteration

(convergence). Then if there are still multiple terminal models, the minimum Schwarz Criterion

is used as a tie-breaker.

There are several additional optional features of the Autometrics algorithm, including a

presearch feature, impulse indicator saturation to test for outliers and step indicator saturation to

find structural breaks. The presearch includes lag reduction and variable reduction. Autometrics

is designed so that while presearch can be beneficial, it is not necessary. It works particularly

well if the variables are orthogonal or if there are only a few highly significant variables. These

features are not used in this thesis but details on impulse indicator saturation and step indicator

saturation can be found in Hendry et. al (2008), Johansen and Nielsen (2009) and Castle et. al

(2015).
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2.2 The Lasso

The Lasso (least absolute shrinkage and selection operator) is a technique for estimating models

which involves variable selection by setting some coefficient parameters equal to zero, effectively

eliminating them from the model (Tibshirani, 1996). It is based on the same ideas as ridge

regression (Hoerl and Kennard, 1970), however in ridge regression the objective function is such

that coefficients are shrunk towards zero, while never actually equalling zero.

The Lasso estimator is defined by:

β̂Lasso = argmin
β
‖y −

N∑
j=1

xjβj‖2 + λ

N∑
j=1

|βj |

The tuning parameter λ governs how much of a penalty there is for non-zero coefficients and

can be chosen according to a variety of criteria, depending on the objective. As λ increases, the

Lasso shrinks the coefficients towards zero. If λ is zero, the Lasso estimator becomes the OLS

estimator. An important question is how to choose λ. Generally, packages that implement the

Lasso will produce parameter estimates for a range of values of λ. Among techniques widely

applied to select the most appropriate tuning parameter are cross-validation, and information

criteria (BIC). There are different types of cross-validation, including K-fold, generalized cross-

validation, and leave-one-out. Studies examining different methods for selecting the correct

tuning parameter include Tibrishirani (1996), Efron et al (2004), Zou et al (2007), Chen and

Chen (2008), Zhang et al (2010) among may others. There is no ‘right’ way to choose the tuning

parameter, but the default of many statistical packages is K-fold cross validation which works by

dividing the data set into K sets, computing the cross-validation error for a range of values of λ

and selecting the λ which produces the smallest cross-validation error. Details on this procedure

can be found in James et al (2013).

2.3 Bayesian Structural Time Series (BSTS)

BSTS is a system developed by Hal Varian and Steven Scott, with the purpose of nowcasting and

short-term forecasting when there are many potential regressors (Scott and Varian, 2014). There

are two main components in the system: a structural time series component and a regression

component. In the regression component, variable selection techniques are used, allowing BSTS

to be used on data sets with many potential regressors.

2.3.1 Structural Time Series Component

The purpose of the first step in the BSTS algorithm is to capture the time series components

(trends and seasonal patterns) in the data. To understand how this step of BSTS works, it is

useful to use state space representation. Using the notation of Durbin and Koopman (2001), a

structural time series model is given by the following two equations:
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yt = Z ′tαt + εt εt ∼ N(0, Ht)

αt+1 = Ttαt +Rtηt ηt ∼ N(0, Qt)

where yt denotes an observation, and αt is a vector of latent state variables. The first equation is

the observation equation and specifies how the observed variable yt is related to the latent state.

The second equation is called the transition equation because it specifies how the latent state

evolves. The latent state can include components which model trends and seasonality which are

captured in Zt, Tt and Rt. This state space specification encompasses a large range of models.

As an example, the following is the ‘basic structural model’:

yt = µt + τt + εt εt ∼ N(0, σ2
ε )

µt = µt−1 + δt−1 + ut ut ∼ N(0, σ2
u)

δt = δt−1 + vt vt ∼ N(0, σ2
v)

τt = −
S−1∑
s=1

τt−s + wt τt ∼ N(0, σ2
w)

Here, µt denotes the trend, δt is the slope of the trend at t and τt denotes the seasonal component.

The state αt is made up of trend and seasonal components so αt = (µt, δt, τt). Using the

terminology of Durbin and Koopman again the first equation is the observation equation and

the subsequent three together can be expressed as the transition equation as above. BSTS adds

a regression component to the basic structural model, so the observation equation becomes:

yt = µt + τt + β′xt + εt εt ∼ N(0, σ2
ε )

where xt is a vector of regressors the researcher believes may be relevant for modelling yt. This

‘basic structural model + regression component’ is the model that BSTS estimates. This distinc-

tion between the time series and structural ‘parts’ of yt is fundamental to the estimation method

by which BSTS produces its estimates. BSTS uses Kalman filtering, smoothing and Bayesian

data augmentation to determine the time series component of yt, subtracts this calculated time

series component from yt and then uses spike-and-slab regression on the ‘remaining’ part of yt.

The Kalman filtering, Kalman smoothing and Bayesian data augmentation techniques are now

briefly described. For a much more detailed explanation on these techniques, readers should

consult Durbin and Koopman (2001).

Kalman filtering is used to predict the distribution of a latent process. For example, consider
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the simple local level model described by the following equations:

yt = αt + εt εt ∼ N(0, σ2
ε )

αt+1 = αt + ηt ηt ∼ N(0, σ2
η)

Kalman filtering works by first finding the distribution of αt, conditional on the information

available at t − 1, which is contained in the series of observations y1:t−1 = y1, ..., yt−1. This

distribution is denoted p(αt|yt−1). Once a new data point, yt, becomes available Kalman filtering

updates the distribution of αt, producing p(αt|yt). In determining p(αt|yt), the algorithm uses

information from the previously found distribution, the new data point, and the variance of each

process. Estimates for the αts are found by taking expectations from the calculated distributions.

The ‘filter’ is the term that determines how much of the new estimate should reflect the new

information available via yt. If for example there is a lot of noise in the yts then the filter will

place less weight on the new observation, and more on the previous estimate of αt. The outputs

of the Kalman filter are the estimated αts, the prediction errors denoted by vt (calculated from

vt = yt − αt), the prediction error variance, and the variance of the estimated αts.

Kalman smoothing works to smooth out the estimates of the αts after the Kalman filter has

been applied. Kalman smoothing finds new distributions of α1, α2, ..., αn using the entire sample

Yn. This is in contrast to filtering which estimates αt using only information available up until

time t. Kalman smoothing relies on the idea of backward recursion, to produce the updated

distributions, which are denoted p(αt|y1:n) to reflect the fact that they are calculated using all

n observations of yt.

Estimation of the regression component of BSTS requires values of αt. Bayesian data aug-

mentation makes it possible to simulate αt from the distributions derived from Kalman filtering

and smoothing. It is not possible to draw αts directly from the derived p(αt|y1:n) because of the

correlation that exists between αt and αt+1. The authors of BSTS use an algorithm developed by

Durbin and Koopman which takes this correlation into account and produces simulated values

for the αts.

Using these three techniques together, the algorithm determines ‘how much’ of the dependent

variable can be explained by structural time series components. This component is then sub-

tracted from the dependent variable, and the regression techniques are run on what ‘remains’ in

yt. As a side note, simply subtracting the times series component from yt is theoretically flawed,

and results in biased and inconsistent estimates of the regression parameters. This is shown in

a simple proof later on.

2.3.2 Regression Component

The regression component of the algorithm uses Bayesian parameter estimation techniques.

Bayesian parameter estimation is based on Bayes’ formula. If θ are the parameters that need to

be estimated, and the available data is d, then Bayes’ formula states:
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Pr(θ|d) =
Pr(d|θ) Pr(θ)∑Θ
θ′ Pr(d|θ′) Pr(θ′)

By setting priors which reflect beliefs about the distribution of the parameters, Bayes’ formula

can be used to update these beliefs and obtain a posterior distribution using the actual realized

data. To use these techniques priors for the parameters of interest need to be set. Often

these are set somewhat ambiguously. Once the priors have been set and posteriors have been

calculated, parameter estimates can be inferred for example by finding the mean of the posterior,

or performing simulations. When the prior and posterior distributions come from the same family

of distributions they are called conjugates. This is often a desirable feature for priors.

BSTS uses a spike-and-slab prior on the regression coefficients, which induces sparsity in the

model (Ishwaran, 1970). For the purposes of describing the algorithm, consider the following

model:

yt =

N∑
j=1

βjxj,t + εt

where the parameters to be estimated are the βjs. Let γj = 1 if βj 6= 0 and let γj = 0 otherwise

(so γ is an indicator variable). The spike-and-slab prior takes the following form:

p(β, γ, σ2
ε ) = p(βγ |γ, σ2

ε )p(σ2
ε |γ)p(γ)

Priors must be set for p(γ), p(σ2
ε |γ) and p(βγ |γ, σ2

ε ), where the γ index is used to indicate that it

refers only to the distribution of parameters of the variables where γk = 1. In the BSTS package,

default priors are built in, but can be changed.

The p(γ) prior gives the prior belief that a particular combination of variables is selected as

the set of regressors in the model. Because the objective of spike-and-slab is to induce sparsity

in the model, the prior is set as an independent Bernoulli prior, where πn is the probability that

a particular variable is included in the model, or Pr(γn = 1) = πn, and therefore:

γ ∼
N∏
n=1

πγnn (1− πn)1−γn

For simplicity, it is often assumed that πn = π for all n. When this is the case, πn represents the

proportion of all possible predictors which are expected to be selected and in the final model. The

default in BSTS is set to πn = π = 0.5. If the researcher has reason to believe that a particular

variable almost certainly should be included in the model, they can set πk = Pr(γn = 1) close to

one to reflect this. The distribution of γ is the ‘spike’ because it sets the probability that βn = 0

at some positive value (resulting in a sparse model).

BSTS sets the conditional variance prior as the conjugate:

1

σ2
ε

|γ ∼ Ga(
v

2
,
ss

2
)
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where Ga(r, s) refers to the Gamma distribution, with mean r/s and variance r/s2. The Gamma

distribution is often used as a prior for the variance as the parameters r and s are always positive.

Here, the researcher has the choice to set the parameters v, interpreted as the prior sample size,

and ss, interpreted as the prior sum of squares, as they wish. The most straightforward method

of setting ss and v is for the user to provide the expected R2 and the expected sample size v.

Then, BSTS uses a trick to calculate the sum of squares ss. Let rss denote the residual sum of

squares. Since:

1−R2 =
rss

ss

and

s2
y =

ss

v

it follows that:
ss

v
= (1−R2)s2

y

That is, the marginal standard deviation of y, sy, is used to find the prior sum of squares,

which is then used in the prior for the standard deviation. Using s2
y in the prior for σ2

ε violates

Bayesian rules whereby priors cannot be data determined. The defaults in BSTS are v = 0.01

and R2 = 0.5.

The prior for the conditional distribution of β is also a conjugate and is set in BSTS as:

βγ |σ2
ε , γ ∼ N(bγ , σ

2
ε (Ω−1

γ )−1)

The researcher has a choice to set the prior means of the βks, as well as the the information

matrix Ωγ . The default in BSTS sets bγ = 0 and sets the information matrix as Ω−1 = κX ′X,

where κ is a weighting term. If the researcher uses these default settings in BSTS, the problem

of priors being data driven exists again. The default calculates the second moment terms in

the information matrix using the full sample. Once the priors are set by the researcher, the

conditional posterior distributions of β and σ2
ε can be calculated from conjugacy formulas.

Define y∗t = yt−Z∗
′

t αt, where Z∗
′

t αt is the time series component. That is, y∗t is the dependent

variable with the time series component subtracted. Setting y* = y∗1:n,

βγ |σε, γ,y* ∼ N(β̃γ , σ
2
ε (V −1

γ )−1)

1

σ2
ε

|γ,y* ∼ Ga(
N

2
,
SSγ

2
)

20



The sufficient statistics to calculate these distributions are:

V −1
γ = (X′X)γ + Ω−1

γ

N = v + n

β̃γ = (V −1
γ )−1(XT

γ y* + Ω−1
γ bγ)

SSγ = ss+ y*
′
y* + bTγ Ω−1

γ bγ − β̃γ
T

γ V
−1
γ β̃γγ

The posterior distribution of γ is different because it does not come from a conjugate prior. Let

C(y*) be a normalizing constant. It can be shown that the posterior distribution of γ is (Scott

and Varian, 2014):

γ|y* ∼ C(y*)
|Ω−1
γ |1/2

|V −1
γ |1/2

p(γ)

SS
N/2−1
γ

To summarize, at this point the prior distributions have been described, the parameters

which can be set by the researcher (or which are alternatively set to the BSTS defaults) have

been outlined, and the calculated posterior distributions have been provided. The next step is

understanding how these posteriors are employed in the algorithm itself to estimate the param-

eters.

2.3.3 Markov Chain Monte Carlo Simulations in Bayesian Parameter

Estimation

The objective of Markov Chain Monte Carlo simulations (MCMC) is to estimate the parameters

of interest (Robert and Casella, 2004). In BSTS, the parameters can be classified as either

relevant to the time series component or the regression component. These two sets of parameters

are both estimated via simulation, but the method of simulation differs. Broadly, these two

‘methods’ correspond to two main steps:

1. Kalman filter, Kalman smoothing and Bayesian data augmentation are used to simulate

α, the time series component, as well as any other parameters in the state space model. In

the basic structural model above, this would include the variance parameters σ2
u, σ2

v , σ2
τ .

Durbin and Koopman’s simulation smoother is used for this step (Durbin and Kooman,

2001).

2. Simulate β and σ2
ε from the posterior conditional probabilities. This involves several steps

because the posterior probabilities are conditioned on γ. In order to draw values of β and

σ2
ε draws of γ are required. Values of γ are drawn via stochastic search variable selection

(SSVS) (George and McCulloch, 1993). SVSS is a variable selection technique which relies
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on Gibbs Sampling. As outlined above, the posterior distribution of γ is based on a number

of statistics which are provided by the researcher, as well as the prior for γ, p(γ). If there are

n possible regressors, then there are 2n possible subsets of regressors. It is computationally

infeasible to calculate the posteriors for each of these subsets. Gibbs sampling is therefore

used, generating a sequence of ‘model subsets’ by selecting m different draws of γ:

γ1, ...., γm

where each γk is one of the m sample draws, corresponding to a different selection of the

possible regressors being selected.

Gibbs sampling operates so that only subsets which are highly probable will be sampled

and included in the sequence. As it continues and generates more draws, the sampler has

more information, and it begins to narrow in on the regressors which are most likely to

be included in the model, selecting them more often. The sequence of draws therefore

gives a good indicator of the subset that should be included in the model. Tabulating

across the sequence gives a useful measure of the probability that a particular variable

should be included in the model. In many cases the sequence of draws converges rapidly

in distribution to γ ∼ f(γ|Y ). The nature of the Gibbs sampler means that it converges

quickly, making it far more efficient to compute than the actual posterior. The draw of γ

from Gibbs sampling is used to find the conditional σ2
ε and β distributions. From these,

draws are obtained for σ2
ε and β from their respective posterior distributions.

To summarize, in each repetition, draws of γ from SSVS and Gibbs sampling are obtained. These

are used to compute the posterior distribution of σ2
ε , which is used to compute the posterior

distribution of β. These distributions can then be used to obtain parameter estimates for β.

Because the algorithm computes distributions and not point estimates for the parameters,

the algorithm does not explicitly select variables; it calculates the probability that a particular

variable has coefficient β 6= 0. To use BSTS as a selection algorithm then, the user must

determine what the threshold for considering a variable selected is.

2.3.4 A Note on the Bias and Inconsistency of BSTS Estimates

After calculating the time series component, BSTS subtracts this from the dependent variable and

proceeds with spike-and-slab regression to estimate the parameters on the regression components.

The process employed by BSTS to ‘eliminate’ the time series component from the dependent

variable is theoretically flawed and likely results in biased coefficient estimates. The complexity

of the process through which the time series component is determined, and the use of spike-

and-slab regression make this difficult to prove directly, but the impact of performing this sort

of ‘trick’ can easily be seen in the case of a multivariate regression using OLS. Consider the

following process, which using the terms from BSTS, consists of both a time series component
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Y Γ and a regression component Xβ:

Y = Y Γ +Xβ + ε (2.1)

where Y is a T × 1 matrix, Y is a T × L matrix containing lags of Y , seasonal indicators, and

variables relevant to the time series dynamics of Y , and X is a T×K matrix containing regression

components. BSTS estimates the time series component using Kalman filtering, smoothing and

Bayesian data augmentation described above, finding estimates for the latent state variables in

α in the following equation:

Y = Z ′α+ u (2.2)

where Z is the S×T observation matrix containing all state components (i.e. local linear trends,

or in this case, an autoregressive component), and α is a S × 1 matrix containing the latent

components. To find the regression component, BSTS estimates the following spike-and-slab

regression, with Y ∗ = Y − Z ′α:

Y ∗ = Xβ + ε (2.3)

Since both Y Γ and Z ′α correspond to the time series dynamics of Y , assume that:

Y Γ ≈ Z ′α (2.4)

So that estimating (2.3) is equivalent to estimating:

Y − Y Γ = Xβ + ε (2.5)

Estimating (2.3) by OLS results in the following estimate for β:

β̂ = (X ′X)−1X ′Y ∗ (2.6)

However the true value of β is found from estimating (2.1). By the Frisch-Waugh theorem,

estimating (2.1) is equivalent to estimating:

MY Y = MY Xβ +MY ε (2.7)

where MY is the annihilator matrix:

MY = I − Y (Y ′Y )−1Y ′ (2.8)
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The correct estimates for β from (2.1) are therefore given by:

β̃ = ((MY X)′(MY X))−1(MY X)′MY Y (2.9)

Unless Y is orthogonal toX or α = 0, β̂ 6= β̃. Therefore, to obtain correct parameter estimates for

β in the regression which does not include Y as a regressor it is necessary to apply transformations

to Y and X to get Y ∗∗ and X∗∗:

Y ∗∗ = MY Y (2.10)

X∗∗ = MY X (2.11)

So, Y ∗∗ and X∗∗ should be used in the spike-and-slab regression. By design however, the

algorithm uses untransformed X, and Y ∗ = Y − αZ. Since

Y ∗ = Y − αZ 6= MY Y = Y ∗∗ (2.12)

and

X 6= MY X = X∗∗ (2.13)

it follows that unless Y and X are orthogonal, so that none of the time series dynamics present

in Y are present in X, or if α = 0, so there are no time series dynamics in Y , the coefficient

estimates from the spike-and-slab regression will be incorrect.

2.3.5 Summary table for Autometrics, the Lasso and BSTS

To use any of the three algorithms, user inputs are required. Table 2.1 provides a summary of

the user inputs and how they influence the algorithm results.
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Algorithm Setting Description Default

Autometrics α - Must be set by user: main Autometrics p-value No - set by user
- α governs the level of pruning, so pa = α.
- Close to the fraction of irrelevant variables retained by the procedure

pb - Governs the amount of bunching pb = max{ 1
2p

1/2
a , p

3/4
a }

- Not (usually) set directly by user
- Too high results in excessive backtracking
- Too low results in bunching effectively turned off

pc - Not (usually) set directly pc = pb
- Governs what is considered ‘highly’ significant, and therefore chopping

pd - Not (usually) set directly by user pd = pa
- Built in features to relax this if necessary

Lasso tuning parameter λ - λ determines the sparsity of the selected model No - either set by user or
- Higher λ will result in a sparse model determined via a separate
- Lower λ will result in a less sparse model algorithm
- If λ = 0 the Lasso is equivalent to OLS
- Various techniques for choosing the ‘best’ λ, usually some form of cross
validation or information criteria is used

BSTS Prior for γ - Bernoulli prior: γ ∼
∏N
n=1 π

γn
n (1− πn)1−γn Bernoulli prior with

- User could choose to use an entirely different prior if so inclined πn = π = 0.5
- If πn = π ∀n then π is the expected model size (or fraction of non-zero
predictors); therefore π affects sparsity of selected model
- If user has reason to believe that a certain predictor is particularly
relevant, can set πn high for that regressor

Prior for 1
σ2
ε
|γ - Gamma prior: 1

σ2
ε
|γ ∼ Ga( v2 ,

ss
2 ) Gamma with parameters

- ss interpreted as prior sum of squares determined by R2 = 0.5,
- v interpreted as prior sample size v = 0.01
- Can also be set by asking user for expected R2 and number of obser-
vations worth of weight v
- User could choose to use an entirely different prior if so inclined

Prior for βγ |σ2
ε - Normal prior: βγ |σ2

ε , γ ∼ N(bγ , σ
2
ε (Ω−1

γ )−1) Normal prior with b = 0,
- Very common to assume vector of prior means b = 0, however if user
has reason to believe a certain predictor is particularly relevant, can set
bγ higher, thereby affecting sparsity

Ω−1
γ = κX′X/n, κ obser-

vations worth of weight on
prior b

- Information matrix Ω−1
γ default violates Bayesian rules as is data de-

termined

Table 2.1: Algorithm settings
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2.4 A Note on Econometric Software as a ‘Black Box’

The previous sections outlined and explained Autometrics, the Lasso and BSTS in a fair amount

of detail. While each effectively accomplish the same task of selecting a model from a general

unrestricted model, each does so in a very different manner, relying on different statistical,

computational and econometric techniques. Ideas from each of these three disciplines are used

to varying degrees, and combine to create algorithms which may be difficult for an economist

with little training in computer programming, or a computer programmer with little training

in economics to understand. On the surface this seems to imply that usage of the algorithms

would be restricted to the subset of economists/statisticians/computer scientists who have an

understanding of all three subjects, and indeed the ideal user would have an understanding of

these three disciplines. In practice however this is generally not the case. Since its inception,

there has been a separation between those who derive econometric theory, those who translate

this theory into econometric software thereby making it accessible to econometric practitioners,

and those who actually use the econometric software to conduct their research. This means that

there is little requirement for the practitioners to understand the processes going on ‘behind

the scenes’ when they estimate a model, or when they consider the results of statistical tests

displayed in the output. Most practitioners simply take displayed results as correct, under the

assumption that the program they are working with has correctly implemented the theory behind

the estimators, tests, etc. which they are interested in.

As discussed at length in the text ‘The Practice of Econometric Theory’ (Renfro, 2009)

the development of econometrics and computer software over the past sixty years has led to a

divergence between those who develop, implement and apply econometric theory. There are many

reasons for this disparity. Perhaps the biggest is that there is little incentive for an econometric

practitioner to spend the time learning and developing their own econometric software due to the

time investment it would require and the availability of software which performs most of what

a practitioner would like it to. The cost of learning a language, writing code and maintaining

documentation, is huge and, particularly when there are a range of existing options which perform

the same task, seems like an inefficient use of time for practitioners.

A valid question is if there are serious consequences for this divergence. On one hand, perhaps

there is little need for a practitioner to understand precisely how a software package does its

calculations. If a practitioner understands the theory behind some estimator or statistical test,

and can use a well-regarded software package to calculate it, on the surface there seems to be

little need for her to implement it herself. There are deeper issues however, which point to more

systemic problems in the practice of econometrics.

One consequence is the fact that the work of practitioners is guided by what software is

available, instead of what theoretically might make the most sense. It is generally not econometric

theory which guides research, but the software that is readily available. As Renfro states:

‘A danger inherent in these circumstances and frictions may be more a tendency for
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the econometrics theorist to become isolated from the economic practitioner. Ob-

viously, to the degree that practitioners accept the software that is available rather

than writing it themselves, having carefully studied the theory, the effect is to impose

an intermediary barrier between these two groups [...] Already, both textbooks and

software manuals are perceptibly becoming focused on the description of the tech-

niques actually available in the existing econometric software packages - rather than

always on the issues of greater present interest to theoreticians.’

A second consequence is the treatment of econometric software as a series ‘black boxes’. As

stated by Renfo:

‘It is all too easy for the econometrics software developer to become a technological

fan-dancer, offering enticing glimpses amidst smoke and mirrors, yet hiding the es-

sential truth from the spectator. The problem is how to avoid this opacity. It can

be avoided if developers make the effort to provide clear descriptions of the charac-

teristics of the displays they provide and if those who teach communicate to their

students precisely what the statistics mean.’

The ‘black box’ problem is compounded as the algorithms become more complicated. Consider

the case of the three algorithms described earlier. A researcher simply wishing to employ GETS

modelling needs to know very little about the algorithms to actually employ them. A user

wishing to generate a sparse model or forecasts can fairly easily use Autometrics, the Lasso and

BSTS, doing almost no background research if they have basic skills in OxMetrics and R. The

ease with which these algorithms can be applied can be viewed as positive, due to the time it

inevitably saves for users. On the other hand it means that, especially when the algorithms are

very complicated, there is almost no incentive to understand what the algorithms are actually

doing.

Added complexity often means it is nearly impossible to disentangle the theory behind the

algorithm, making these algorithms ‘super opaque’ black boxes in the sense that both the under-

lying theory and software may not be well understood by the user. Consider BSTS which is the

most complicated of the three algorithms described earlier. It is difficult to know, and is at least

not well explained in the documentation, what the effect of changing many of the inputs actually

is. This makes it very difficult for a user to know whether they are employing the algorithm

in the correct manner, and how to interpret results. Implementing Autometrics and the Lasso

correctly relies on knowledge of computer software to a lesser extent than the BSTS, and the

properties of the results are more easily mapped to the inputs.

Two additional consequences of the ‘black box’ phenomenon are the disregard and even ac-

ceptance of numerical inaccuracy within software packages, and the misinterpretation of output.

Most users do not consider numerical accuracy when deciding between different statistical pack-

ages. Even econometrics textbooks give the impression that any of the multiple econometrics

packages available are acceptable to solving the problem, and as McCullough (1999) states with

27



the ‘implicit and unwarranted assumptions being that the computer’s solution is accurate and

that one software package is as good as any other.’ It would likely come as a surprise to many

users that, as analyzed extensively by Renfro, different software packages performing the same

task, using identical data produced different results. Even if they were more aware of the inac-

curacies, most do not have the computer programming background actually do anything about

it, and as the field generally seems to accept econometric software as it is, there is no real in-

centive to do so anyways. Moreover, most users think the onus is on the developers to produce

software which produces accurate results. But since numerical accuracy is not a selling feature

of econometric software, it is not surprising that the developers have little interest in ensuring it,

instead focusing on new features or speed of computation, both of which are important to users.

As McCullough points out with multiple examples, numerical inaccuracy can have a big impact

on results and findings, and is therefore an issue that needs to be addressed.

Numerical inaccuracy is likely to be even more prevalent in a software package like R. The

manner in which R is developed and maintained is different from that of the more traditional

econometric packages as it is free and relies on individual packages which can be developed and

shared by anyone via the internet. The following quote is taken from R’s official website:

‘Many users think of R as a statistics system. We prefer to think of it of an environ-

ment within which statistical techniques are implemented. R can be extended (easily)

via packages. There are about eight packages supplied with the R distribution and

many more are available through the CRAN family of Internet sites covering a very

wide range of modern statistics.’

This approach where the testing requirements are minimal leaves further room for computational

error. Although in time users find errors, and packages are updated, if the packages are sufficiently

complex it is less likely that numerical errors are found and reported simply because most users

are likely unsure as to what the results should actually be. The disregard, or even indifference,

towards numerical inaccuracy in the field of economics is troublesome and is a symptom of the

much greater problem in the field, which is that of economist’s blind faith in the econometric

software packages available to them.

A separate but related issue is the interpretation of results. Errors of this nature exist for

even the most experienced economist; consider David Hendry’s debate with Milton Friedman

where Friedman failed to realize that their software had made a heteroskedasticity correction

using a normalization, meaning all their t-values were inflated, which greatly impacted their

analysis (Ericsson et al., 2016). Mistakes of these nature are not uncommon even when software

and interpretation of results is well documented, and are an even bigger problem where the

algorithms are complex and the documentation is vague, imprecise or incomplete.

Given the tendency of economists to treat econometric software as a ‘black box’, model selec-

tion algorithms should be as accurate, robust and straightforward as possible with documentation

which clearly explains the inputs, the theory behind the algorithm, and what the results actually

mean. What the criteria for accurate, robust and straightforward software should be is debat-
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able, but a reasonable question that a user should ask is ‘what is the proper way to use this

algorithm’. If the answer is relatively simple and the outcome of changing the user inputs is

clear, this should be viewed favourably. If the answer is long and not straightforward, it seems

naive to expect users to implement it properly.

As machine learning ideas become more mainstream in the field of economics, there are

likely to be increasing numbers of algorithms which make forecasts, select models, etc. in a

seemingly automatic way. While there is potential for these algorithms to simplify the job of

an econometrician, it is crucial that algorithms are documented and taught in such a way that

allows the average econometrician to use them appropriately. This will be necessary until the

field begins to shift towards a more data-driven style of research, and when an education in

economics also includes a more in depth understanding of how economic software is developed.
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Chapter 3

Evaluating Model Selection

Algorithms

3.1 The Monte Carlo Technique

Monte Carlo (MC) simulations are a useful tool which provide a framework for evaluating and

comparing model selection algorithms. In the context of testing and evaluating model selection

algorithms, Monte Carlo simulations involve four main steps as described below.

3.1.1 Formulating the DGP

First, the data generating process (DGP) must be formulated. There are a number of features

to consider in the DGP design which will have an impact on the success of the model selection

algorithms. Of particular importance in this study is the distribution and non-centrality of the

regressors. As will be explained in more detail later, the non-centrality of a particular regressor

is the signal-to-noise ratio, and thus is a function of both the coefficient βk and the variance of

a particular regressor. A simple example of a DGP is:

yt = β0 + δyt−1 +

n∑
k=1

βkxk,t + εt, εt ∼ IN(0, 1)

xt ∼ INn(0, I)

for t = 1, ..., T , where y0 = 0. In practice H + T draws of xt are made and the first H are the

lead in to the sample for estimation.
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3.1.2 Running Simulations

The second step is to perform M simulations for the specified DGP, generating M ‘replications’

of the dependent variable, yt = (y1, ..., yT ). There are two options for drawing the regressors

(excluding the lagged dependent variable yt−1). Either new values of the regressors can be drawn

for each of the M simulations (stochastic regressors), or a single draw of the regressors can be

used (fixed regressors). In each of the M replications, a new draw of εt = ε1, ..., εT is taken.

3.1.3 Formulating the GUM

The third step is to formulate the GUM with the DGP nested within it. The GUM can include

lags, nonlinearities, impulse indicators, etc. An example of a GUM associated with the DGP

described above is:

yt = β0 + δyt−1 +

N∑
k=1

βkxk,t + ut ut ∼ IN[0, 1]

xt ∼ INN(0, I)

where N ≥ n and t = 1, ..., T . To be explicit, the difference between the DGP and the GUM

is that the DGP includes n + 1 regressors while the GUM includes N + 1 regressors. That is,

x1,t, ..., xn,t in the GUM are exactly the x1,t, ..., xn,t in the DGP. If fixed regressors are used for

x1,t, ..., xN,t, the GUM does not change over the M simulations. If stochastic regressors are used,

each of the M simulations would have different draws for each of the N regressors.

3.1.4 Running the Algorithm

At this point, there are M sets of generated data. The final step is to run the model selection

algorithm on each of these sets. The algorithm commences from the GUM, searches through the

variables and returns the selected model. For each of the M generated yts the algorithm selects

the ‘best’ model, eliminating some of the regressors, and providing parameter estimates for those

remaining. Thus, the algorithm will produce M final model estimates: one for each of the M

simulations.

3.2 Evaluating Automatic Model Selection

Evaluating automatic model selection algorithms empirically is made difficult by the fact that

the DGP is never known. This is why evaluating automatic model selection using Monte Carlo

simulations is so useful. Because the DGP is precisely known, it is possible to test the accuracy

with which an algorithm selects a model that is close to it. In this section, several metrics which

provide a convenient means for evaluating the efficacy of model selection algorithms in Monte
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Carlo simulations are introduced and explained.

3.2.1 Gauge and Potency

The gauge and potency provide measurements of the accuracy with which a model selection

algorithm excludes irrelevant variables and selects relevant variables (Castle et al., 2011). The

gauge is the proportion of the time an algorithm selects variables which are not in the DGP

and the potency is the proportion of the time the algorithm selects variables which are in it.

The formulas for the gauge and potency are based on another metric called the retention rate.

The retention rate is the rate at which a particular regressor in the GUM is selected by the

algorithm to be included in the final model. The potency is then the average retention rate

across the variables which were part of the DGP. The gauge is the average retention rate across

the variables which were not part of the DGP. Say there are M simulations. Variables x1, ..., xn

are in the DGP, making these the relevant variables. Variables xn+1, ..., xN are not in the

DGP, making these the irrelevant variables. Let β1, ..., βN be the true parameter values, so that

βn+1, ..., βN = 0. Let β̃k,i be the estimated coefficient on variable xk in simulation i for each of

the N variables following model selection. If a particular variable is not selected in a simulation,

β̃k,i = 0. Let 1(·) be an indicator variable with 1(·) = 1 if xk is selected (so β̃k 6= 0) and 1(·) = 0

if xk is not selected (so β̃k = 0). The retention rate, potency and gauge are defined as:

retention rate : p̃k =
1

M

M∑
i=1

1(βk,i 6= 0)

potency =
1

n

n∑
k=1

p̃k

gauge =
1

N − n

N∑
k=n+1

p̃k

Note that usually the intercept is not included in the potency and gauge calculations as it is

almost always selected and is often forced. Similarly depending on the nature the DGP the

lagged dependent variable is often excluded as well.

3.2.2 Mean Squared Errors

The mean squared errors (MSEs) provide a measure for the accuracy of the parameter esti-

mates. Here, a distinction is made between conditional and unconditional MSEs. If there are M

simulations, the conditional MSE for variable xk is calculated as:

CMSEk =

∑M
i=1[(β̃k,i − βk)2 · 1(β̃k,i 6= 0)]∑M

i=1 1(β̃k,i 6= 0)
, (β2

k,i when

M∑
i=1

(1(β̃k,i 6= 0) = 0)

where β̃k,i is the estimated parameter if xk is selected. The unconditional MSE is defined as:
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UMSEk =
1

M

M∑
i=1

(β̃k,i − βk)2, ∀ k

If xk is not selected, then β̃k,i = 0. In this thesis the square root of the conditional mean squared

errors denoted RCMSE is reported. Whereas the CMSEk averages across simulations in which

a particular xk is selected, UMSEk takes the average across every simulation. The UMSE is a

measure which many authors report, however in this study it is not reported because the CMSE,

when interpreted alongside the gauge and potency, is much more informative. For example,

say that a retention rate of a particular irrelevant variable xk is 0.01; that is, it is selected in

10 of 1000 simulations. Then, irrespective of what the parameter estimates in those 10 cases

were, the UMSE is going to close to be 0. On the other hand, the CMSE provides a measure

of how close (or far) the estimates are to the true parameter (βk = 0) in those 10 cases and

can actually be quite large. Similarly, consider a relevant variable xj which has a potency of

0.6, and is not selected in 400 of 1000 simulations. The UMSE for xj , of course, will include

the estimates from those 400 simulations where xj is not selected, and β̃j,i = 0. For a relevant

variable which has a relatively low potency then, the UMSE can end up being quite large, and

says little about the accuracy of the parameter estimates themselves. The CMSE on the other

hand provides a measure of how effective an algorithm is at actually estimating parameters,

which taken alongside the gauge and potency, is much more useful. Additionally, in empirical

research only the conditional selected model is known meaning that the properties of selected

models are more useful when evaluating selection algorithms. While UMSEs are not reported in

this study, they are available upon request.

3.2.3 A Note on Statistical Size

At first glance, the ‘size’ of each algorithm might seem like an informative metric to include.

In statistics, size refers to the probability of a Type 1 error, namely that the null hypothesis is

rejected when it is true. In the context of model selection algorithms, size is then the probability

that the DGP is not selected, which in simulations corresponds to the proportion of the time that

either a relevant variable is excluded or a irrelevant variable is included in the selected model.

Under the null that βk = 0 the probability of excluding an irrelevant variable is (1−α). Then, if

there are N−n irrelevant variables, the probability that they are all excluded is (1−α)N−n. The

probability of retaining a single irrelevant variable is then 1 − (1 − α)N−n which could be very

high, especially if there are many irrelevant variables. It is for this reason that the size of each

procedure is not reported. It seems sensible to accept that while model selection may not always

select the precisely correct DGP, there is immense value in excluding ‘garbage’, a fact which is

largely overlooked when statistical size is used. Note that statistical size is very dependent on

the number of irrelevant variables N − n. However since the GUM includes many variables to

ensure that nothing important is missed, it will usually be the case that N − n is sufficiently
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large to result in a high statistical size.

3.3 The Benchmark

Comparing the gauge, potency and RCMSE across different algorithms tells an interesting story

in itself. Another interesting and related story however, is how these results compare to the

‘benchmark’ or ‘best case scenario’. In the context of model selection, the ‘best case scenario’

means doing model selection under the conditions which offer the ‘best chance’ for an algorithm

to successful identify the DGP. Identifying the benchmark allows the results of model selection to

be qualified. What the optimal conditions are depends on the DGP specification, and specifically

whether or not the regressors are orthogonal or not. These two cases are considered in turn.

3.3.1 Orthogonal Regressors

Consider first the case of orthogonal regressors, and specifically consider the following DGP:

yt = β0 + δyt−1 +

n∑
k=1

βkxk,t + εt, εt ∼ IN(0, 1)

xt ∼ INk(0, I)

for t = 1, ..., T . Now suppose the researcher (magically) knew precisely which variables were in

the DGP and estimated the following model:

yt = β0 + δyt−1 +

n∑
k=1

βkxk,t + ut

This is the ‘best case scenario’ for finding the DGP; every relevant variable is included in the

model being estimated with no irrelevant variables that could be mistakenly selected. In real life,

however, it would be impossible to know that modelling was in fact commencing from the DGP

and a good econometrician naturally would be interested in conducting inference to determine

which variables, from a statistical perspective, were significant. This would generally be done

via t-statistics, with high p-values leading the researcher to conclude that those variables were

insignificant. The results from conducting this process which is referred to as selection from the

DGP are therefore the benchmark when the regressors are orthogonal.

This idea is captured in a model selection technique called the 1-cut approach. Consider the

following GUM, with N << T :

yt = β0 +

N∑
k=1

βkxk,t + ut

Because N << T , the GUM can be estimated directly, resulting in coefficient estimates and
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standard errors for β1, ..., βN . Then t-statistics are computed and ordered as follows:

t2(1) ≥ t
2
(2) ≥ ... ≥ t

2
(N)

Variables with t2k ≥ c2α are retained. Thus only a single decision is required to select variables;

there is no ‘data mining’ or repeated testing.

The 1-cut approach embodies the approach that a researcher may and usually will undertake

in practice (although it is not explicitly referred to as model selection). Therefore, the potency

and RCMSE results from the 1-cut approach on the DGP are reported alongside the potency,

retention rate and RCMSE results from the three algorithms. This provides some context for

the results from the model selection algorithms. For example, if a particular set of simulations

shows that a model selection algorithm has a potency of 0.4 and selects relevant variables 40%

of the time, critics may be inclined to dismiss the algorithm as ineffective and inaccurate. This

is not a valid criticism, however, if when estimating from the DGP itself, relevant variables are

deemed insignificant by their t-tests (or equivalently, not selected by 1-cut) a similar proportion

of the time. To re-iterate, if in the ‘best case’ scenario a relevant variable is deemed irrelevant or

insignificant, it should not come as surprise or indeed be considered a ‘drawback’ if this variable

is not selected by a model selection algorithm, amongst many other variables. Model selection

algorithms should not lose credibility if they are unsuccessful at finding ‘significant variables’

which are not even ‘significant’ when the model is estimated from the DGP. It should also be

noted that even when the regressors are orthogonal, there will be some amount of correlation

between the regressors for any given sample, meaning that algorithms have the potential to

outperform the 1-cut approach, which is explained in more detail below.

3.3.2 Correlated Regressors

When the regressors are correlated, the 1-cut approach is not valid. The best hope a researcher

would have at finding variables which matter in this case would be to use a model selection

algorithm which is equipped to deal with correlation (which Autometrics, the Lasso, and BSTS

all claim to be) on the DGP itself. Because each of the algorithms employ different approaches

to model selection, and the question over which one is the ‘best’ is subjective, the benchmark

for a particular algorithm are the results from using that algorithm to select from the DGP. To

make this more formal, consider the following DGP:

yt = β0 + δyt−1 + β1x1,t + β2x2,t + β3x3,t + β4x4,t + β5x5,t + εt

εt ∼ IN[0,1]

xt ∼ INN[0,Ω]

with ωkk = 1 and ωjk = 0.9 for j 6= k for t = 1, ..., T . Now suppose the researcher knew which

variables were relevant and used the following GUM:
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yt = β0 + δyt−1 + β1x1,t + β2x2,t + β3x3,t + β4x4,t + β5x5,t + ut

The benchmark for an algorithm searching through a much larger GUM would be the potency

and RCMSE results from commencing from the above GUM, which is the true DGP. When

regressors are correlated, it is precisely these conditions which allow the algorithm the best

chance at selecting the correct model.

3.4 Interpreting the Results

The results from the Monte Carlo simulations that are presented in the next section provide

insight into three questions: (1) how algorithms perform relative to one another given a particular

correlation structure, (2) how algorithms perform relative to their respective benchmarks and

(3) more broadly how the results of empirical model selection using Autometrics, the Lasso and

BSTS can be interpreted. The next section details how the gauge, potency, retention rates,

RCMSE and benchmark results provide insight into these questions.

3.4.1 Algorithm vs. Algorithm

The gauge, potency and RCMSE from selection from the GUM make it easy to compare the

algorithm’s performance within a particular correlation structure. High potencies, low gauges

and low RCMSEs are all desirable in the MC simulations.

3.4.2 Algorithm vs. Benchmark

Evaluating the algorithm’s results against their benchmark by comparing the potencies, retention

rates and RCMSEs in each case is straightforward. If the results from model selection are similar

to the benchmark then the algorithm is performing as well as could optimistically be expected.

A productive framework for thinking about this is considering the costs of inference and the costs

of search. Costs of inference are inevitable even for a modeller who commenced from the DGP

but (as is always the case in economics) did not know if the specification was correct and thus

conducted inference. Similarly, there are obviously costs of inference when using automatic model

selection on a GUM of any size. These costs can be measured with the RCMSE values. Costs

of search are the additional costs, and are the result of commencing from a more general model.

The difference between the RCMSE when commencing from the GUM and the RCMSE when

commencing from the DGP (either using 1-cut or using model selection directly on the DGP)

measures the costs of search for a particular model selection algorithm. Thus, the benchmark

DGP results reported in the results tables are useful because they provide context for the cost

of inference when performing model selection (via the RCMSEs), and also provide a measure of

the cost of model selection (via the RCMSE differences).
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3.4.3 Simulation Results vs. Empirical Model Selection

MC simulations provide lots of interesting results but they are just that: simulations. A valid

question is what MC results say about model selection empirically. The difficulty with MC

simulations is that their results are generally limited to the specified DGP. That is, the potency

and gauge measures for a particular set of simulations would only be directly relevant in a real

world situation where the DGP has the exact same specification as in the MC simulation. As

has been discussed, this is an impossible problem. A method is therefore required, which allows

the results of MC simulations to be ‘mapped’ to empirical model selection. This is mostly easily

done with the use of the non-centrality parameter.

Intuitively, regressors which are ‘highly significant’ should be ‘picked up’ more frequently

than those which are less significant. A measure which provides a useful interpretation of the

‘significance’ of a variable xk is the non-centrality of xk, denoted ψk. The non-centrality is the

‘signal-to-noise’ ratio, where the signal is the value of the parameter βk and the noise is σβk .

The non-centrality is therefore just the expectation of the t-statistic for variable xk:

tβ̂k =
β̂k
σ̂β̂k
' β̂k
σβ̂k
∼ N

[
βk
σβ̂k

, 1

]
= N

[
ψk, 1

]
Therefore, the formula for ψk is given by:

ψk =
βk
σβ̂k

The above formula makes explicit that relationship between ψk, the coefficient βk and the vari-

ance σ2
β̂k

. The non-centrality is useful in understanding the relationship between the specification

of the DGP and the potency or retention rates of particular variables. Consider, as discussed

earlier, estimating a model directly from the DGP, and obtaining the t-statistics for each of

the relevant variables. Because the DGP is known, it is possible to derive the distribution of

the t-statistics and as the above formulas suggest, the non-centrality of a variable character-

izes this distribution. Knowing the t-statistic distribution means it is possible to determine the

probability that a variable is deemed significant, or more formally, the probability that the null

H0 : βk = 0 is rejected for a given significance level α. This probability is called the theoretical

retention probability, and is calculated from:

Pα = Pr( |tk| ≥ cα | ψk ) = Φ(cα − ψk)

where Φ(x) denotes the integral of the normal density. It is possible to calculate the theoretical

retention probability for every non-centrality and significance level. This is important because

as it turns out certain algorithms have retention rates which are in line with the calculated

theoretical retention probabilities.
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3.5 Experimental design

The experimental design consists of three separate sets of experiments. In the first, the regressors

are all orthogonal, in the second there is correlation between the relevant regressors, and in the

third there is correlation between all regressors. In all three sets of experiments the algorithm

settings remain constant; these settings are outlined in the next section. Furthermore, the DGPs

and more specifically the values of the non-centralities ψk are chosen in such a way that the

results are comparable across the three separate sets of experiments. In the following sections,

the DGPs and GUMs are described and the results are presented for each of the three sets of

experiments. The final section provides a summary of results.

3.5.1 Algorithm Settings

As discussed in Chapter 2, there are a number of decisions that must be made when applying

the algorithms. The following table outlines the settings for the three algorithms compared, as

well as the relevant software that was used for the simulations.

Algorithm Software/Relevant
package

User input Comment

Autometrics OxMetrics version
7.00

α = 0.01 All other defaults used,
as described in Table 2.1

Lasso R version 3.2.3, glm-
net package

λ chosen by 10-fold
cross validation

K-fold cross validation
built into glmnet

BSTS R version 3.2.3, bsts
package

R2 = 0.5, and v =
0.01

All default priors used

Table 3.1: Algorithm settings

An additional setting for BSTS was the decision to consider variables with posterior inclusion

probability greater than 0.15 as selected. While this seems low, it was rare to observe posterior

inclusion probabilities greater than 0.2.

3.5.2 Orthogonal Regressors

The first set of experiments considers cases where the regressors, with the exception of the

lagged dependent variable, are mutually orthogonal. There are three different DGPs considered,

which vary according to the coefficients β1, ..., β5. The values of these coefficients affect the

non-centralities ψ, which is a more interpretable characterization. The β0 and δ coefficients are

the same across all experiments, with β0 = 1 and δ = 0.5. Each of these DGPs is nested in

two separate GUMs: one with the total number of regressors N , excluding the lagged dependent

variable (LDV), as N = 80 and the second with N = 120. In all experiments, T = 100.

Thus, there are six separate experiments performed for the case of orthogonal regressors. In all

38



experiments, fixed regressors were used. Note that in practice, in any given sample there will be

degree of correlation between the simulated x1, ..., xN , and that when N >> T orthogonality is

in fact impossible. Nevertheless, variables can be generated so that correlation between them is

small. Let x′t = (x1,t, ..., xN,t). The DGPs take the following form:

yt = β0 + δyt−1 + β1x1,t + β2x2,t + β3x3,t + β4x4,t + β5x5,t + εt

εt ∼ IN[0, 1]

xt = 0.5xt−1 + vt,vt ∼ INN [0,Ω]

with the persistence parameter ρ = 0.5, ωkk = 1 − ρ2 = 0.75 and ωjk = 0 for j 6= k. While

this may seem like an arbitrary choice for the variance-covariance matrix Ω, it has been chosen

because the resulting non-centralities are integers and in line with previous studies. Note that

the results that follow break down as ρ → 1, but since ρ = 0.5 here it is not a issue. Table

3.2 describes the three DGPs considered in this set of experiments, and gives the theoretical

retention probabilities P0.01. Because the regressors are orthogonal in this set of experiments,

the benchmark is model selection from the DGP via the 1-cut approach.

x1 x2 x3 x4 x5

DGP 1 βk 0.6 0.6 0.6 0.6 0.6
ψ 6 6 6 6 6

P0.01 0.999 0.999 0.999 0.999 0.999
DGP 2 βk 0.2 0.2 0.2 0.2 0.2

ψ 2 2 2 2 2
P0.01 0.266 0.266 0.266 0.266 0.266

DGP 3 βk 0.2 0.3 0.4 0.5 0.6
ψ 2 3 4 5 6

P0.01 0.266 0.645 0.914 0.990 0.999

Table 3.2: DGP specification for experiments with orthogonal xks

Each DGP is nested in two separate GUMs, one with N = 80, and one with N = 120. These

two GUMs take the following form:

yt = β0 + δyt−1 +

N∑
k=1

βkxk,t + ut

Tables 3.3 and 3.4 report the gauge and potency for the DGP 1 and DGP 2 respectively, while

Table 3.5 and Table 3.6 report their RCMSE results. The lowest gauge, highest potency and

lowest RCMSE are in bold. Figures 3.1 and 3.2 graph the RCMSE results. Tables 3.7-3.8

report the results for DGP 3 and Figures 3.3 and 3.2 graph these results. There are varying

non-centralities in DGP 3 which is why Table 3.8 reports the retention rates and the theoretical

retention probabilities for each individual relevant regressor.

39



N = 80 N = 120
Potency Gauge Potency Gauge

Autometrics 0.994 0.013 0.991 0.013
Lasso 1.000 0.216 0.997 0.174
BSTS 0.715 0.001 0.757 0.000
DGP 0.999 N/A 0.999 N/A

Table 3.3: Gauge and potency for DGP 1

N = 80 N = 120
Potency Gauge Potency Gauge

Autometrics 0.320 0.029 0.263 0.029
Lasso 0.526 0.146 0.428 0.125
BSTS 0.022 0.001 0.023 0.001
DGP 0.278 N/A 0.278 N/A

Table 3.4: Gauge and potency for DGP 2

yt−1 x1 x2 x3 x4 x5

δ/βk 0.5 0.6 0.6 0.6 0.6 0.6

N = 80 Autometrics 0.057 0.112 0.127 0.099 0.105 0.111
Lasso 0.085 0.201 0.196 0.183 0.173 0.201
BSTS 0.082 0.274 0.259 0.232 0.235 0.238
DGP 0.055 0.097 0.102 0.110 0.105 0.108

N = 120 Autometrics 0.068 0.106 0.113 0.129 0.121 0.107
Lasso 0.124 0.165 0.204 0.285 0.215 0.239
BSTS 0.105 0.186 0.262 0.273 0.241 0.211
DGP 0.055 0.097 0.102 0.110 0.105 0.108

Table 3.5: RCMSE for DGP 1
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yt−1 x1 x2 x3 x4 x5

δ/β 0.5 0.2 0.2 0.2 0.2 0.2

N = 80 Autometrics 0.120 0.164 0.221 0.124 0.142 0.151
Lasso 0.218 0.129 0.137 0.128 0.127 0.133
BSTS 0.153 0.216 0.125 0.119 0.141 0.221
DGP 0.091 0.119 0.126 0.161 0.146 0.157

N = 120 Autometrics 0.139 0.140 0.162 0.210 0.180 0.146
Lasso 0.258 0.123 0.130 0.139 0.131 0.132
BSTS 0.191 0.182 0.180 0.084 0.159 0.131
DGP 0.091 0.119 0.126 0.161 0.146 0.157

Table 3.6: RCMSE for DGP 2

N = 80 N = 120
Potency Gauge Potency Gauge

Autometrics 0.712 0.018 0.708 0.021
Lasso 0.877 0.179 0.835 0.146
BSTS 0.361 0.001 0.334 0.001
DGP 0.766 N/A 0.766 N/A

Table 3.7: Gauge and potency for DGP 3

ψ 2 3 4 5 6
P0.01 0.266 0.645 0.914 0.990 0.999

N = 80 Autometrics 0.216 0.414 0.948 0.989 0.995
Lasso 0.552 0.869 0.974 0.995 0.996
BSTS 0.003 0.136 0.325 0.562 0.781
DGP 0.331 0.672 0.847 0.982 1.000

N = 120 Autometrics 0.367 0.573 0.655 0.953 0.992
Lasso 0.669 0.779 0.740 0.989 0.997
BSTS 0.059 0.036 0.092 0.602 0.880
DGP 0.331 0.672 0.847 0.982 1.000

Table 3.8: Retention rates for DGP 3

yt−1 x1 x2 x3 x4 x5

δ/βk 0.5 0.2 0.3 0.4 0.5 0.6

N = 80 Autometrics 0.077 0.153 0.143 0.097 0.112 0.117
Lasso 0.119 0.130 0.171 0.200 0.196 0.223
BSTS 0.114 0.115 0.181 0.192 0.226 0.238
DGP 0.070 0.120 0.090 0.097 0.101 0.110

N = 120 Autometrics 0.103 0.143 0.111 0.133 0.127 0.112
Lasso 0.180 0.119 0.181 0.252 0.218 0.258
BSTS 0.131 0.172 0.177 0.216 0.239 0.227
DGP 0.070 0.120 0.090 0.097 0.101 0.110

Table 3.9: RCMSE for DGP 3
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Figure 3.1: RCMSE for DGP 1
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Figure 3.2: RCMSE for DGP 2
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Figure 3.3: RCMSE for DGP 3
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Figure 3.4: Retention rates for DGP 3
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The above results show the Lasso consistently achieves the highest potency and has the highest

retention rates across all levels of ψ but also has by far the highest gauge. Autometrics selects

relevant regressors at a level which is generally similar to the theoretical retention probability

(with a couple of exceptions) and does nearly as well as the Lasso when ψ > 4. In comparison

to Lasso and Autometrics, BSTS does not fare well when selecting relevant variables, even for

variables with high values of ψ. Retention rates and potency measures do not change drastically

between N < T and N > T when ψ > 4, but results for lower values of ψ vary quite significantly.

BSTS consistently achieves the lowest gauge but its low potency and retention rates indicate

that it tends to select very sparse models in general. Note that when conducting the experiments,

various priors were tested but this did not seem to have an impact on the results for BSTS. The

gauge for Lasso is generally very high and in the range of 0.12 to 0.22, which along with the

high levels of potency indicate that it selects models which include a lot of variables. In all of

the six experiments, Autometrics has a gauge close to the significance level α = 0.01, however in

DGP 2 with ψ = 2, the gauge is slightly higher at 0.029 probably because it misses some relevant

variables with such low non-centralities. It could also possibly correspond to a ‘bad draw’ due

to the fact that fixed regressors are used.

The RCMSE results are most easily interpreted by the graphs, which show that the results

vary depending on values of ψ. As can be seen in Figures 3.1 and 3.3, Autometrics performs

well for high values of ψ. Figure 3.3 shows that Lasso and BSTS increasingly struggle as ψ rises.

Results are mixed in Figure 3.2, where there is a low non-centrality of ψ = 2. Note that the

spike in RCMSE for x2 in Autometrics could be due to the fact that fixed regressors are used.

Both the Lasso and Autometrics have results similar to, or better than, the benchmark when

examining the potency and retention rates. As mentioned, across the board, the Lasso has high

potencies and high gauges, meaning that overall there is less ‘selection’ going on. It is a different

story when examining the RCMSE results however; Autometrics is much closer to the benchmark

(except in the case where ψ = 2 where results are varied). This means the costs of inference are

high in Lasso and BSTS.

The five biggest takeaways from this set of experiments are:

1. Autometrics consistently has a gauge close to the significance level and retention rates/potencies

close to the theoretical retention probabilities.

2. The Lasso scores high for successfully retaining relevant variables, but taken next to the

gauges, this is less impressive.

3. BSTS selects models which are very sparse, which is seen clearly through its extremely low

measures for gauge, and relatively low levels of potency.

4. The costs of inference vary with ψ, but generally are quite low with Autometrics, but high

for both the Lasso and BSTS.

5. The huge differences in gauge between the Lasso and BSTS make comparisons using just
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these two measures impossible. It is infeasible to derive a ‘gauge-corrected’ potency that

would make comparisons meaningful.

3.5.3 Correlation Between Relevant Regressors

The second set of experiments considers several cases where there is correlation between the

relevant regressors. There are two different DGPs considered, which again vary according to

their coefficients β1, ..., β5 and therefore their respective non-centralities. In both DGPs β0 = 1

and δ = 0.5. β1, ..., β5 have been chosen so that the non-centralities in this set of experiments

are in line with those in the first set of experiments, making the results comparable. In all

experiments fixed regressors are used. As in the first set of experiments, the two DGPs are

nested in two different GUMs with N = 80 and N = 120. In all experiments, T = 100. Thus,

there are four separate experiments performed and reported on. Let x′t = (x1,t, ..., xN,t). The

DGPs take the following form:

yt = β0 + δyt−1 + β1x1,t + β2x2,t + β3x3,t + β4x4,t + β5x5,t + εt

εt ∼ IN[0, 1]

xt ∼ INN [0,Ω]

with ωkk = 1, ωjk = 0.9 for j 6= k, j, k ≤ 5 and ωjk = 0 elsewhere. Due to the correlation

between regressors, it is difficult to derive a formula which analytically gives the relationship

between ψk, σβ̂k , and tβk . However, ψk can also be expressed as E[tβ̂k ]. Thus the βks in this set

of experiment are set such that the average t-statistic for variable xk across simulations is equal

to the desired ψ. More explicitly:

ψk = E[tβ̂k ] =
1

1000

1000∑
i=1

tβ̂k,i

where tβ̂k,i is the calculated t-statistic for β̂k in simulation i. Table 3.10 describes the two DGPs

considered.

x1 x2 x3 x4 x5

DGP 4 βk 0.58 0.84 1.25 1.55 1.75
ψk 2 3 4 5 6

DGP 5 βk -0.58 0.84 -1.25 1.55 -1.75
ψk -2 3 -4 5 -6

Table 3.10: DGP specification for experiments with correlation between relevant regressors

When the regressors are not orthogonal, as explained, simply using 1-cut selection on the

DGP is not a feasible baseline. The ‘best case scenario’ then is doing selection on the DGP

using the algorithms themselves. These results capture how effective the algorithm is in the case
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where the GUM includes exactly the correct regressors. The difference between the RCMSE

from selection on the DGP and selection from the GUM is therefore a measure of the costs of

inference.

Tables 3.11 and 3.12 report the gauge, potency and retention rates for DGP 4, and include

results when selecting from the DGP for each algorithm. Tables 3.13 and 3.14 do the same for

DGP 5. Tables 3.15 and 3.16 report RCMSE results. The lowest gauge, highest potency, and

lowest RCMSE are in bold. Figures 3.5-3.8 graph the results. Figures 3.9 and 3.10 graph the

differences between RCMSE for each algorithm and their base line, and thus give an indication

of the costs of inference for each of the algorithms.

N = 80 N = 120
Potency Gauge Potency Gauge

Autometrics 0.777 0.014 0.769 0.013
from DGP 0.797 0.797

Lasso 0.993 0.108 0.993 0.077
from DGP 0.994 0.994

BSTS 0.690 0.000 0.677 0.000
from DGP 0.784 0.784

Table 3.11: Gauge and potency for DGP 4

ψ 2 3 4 5 6
P0.01 0.266 0.645 0.914 0.990 0.999

N = 80 Autometrics 0.333 0.568 0.988 0.998 0.998
Lasso 0.977 0.990 1.000 1.000 1.000
BSTS 0.179 0.340 0.949 0.993 0.991

N = 120 Autometrics 0.316 0.611 0.923 0.996 0.999
Lasso 0.968 0.998 1.000 1.000 1.000
BSTS 0.155 0.369 0.874 0.988 0.999

From DGP Autometrics 0.330 0.723 0.934 0.996 1.000
Lasso 0.979 0.993 1.000 1.000 1.000
BSTS 0.344 0.589 0.990 0.999 0.998

Table 3.12: Retention rates for DGP 4, including from DGP

N = 80 N = 120
Potency Gauge Potency Gauge

Autometrics 0.716 0.014 0.719 0.014
from DGP 0.775 0.775

Lasso 0.429 0.088 0.374 0.057
from DGP 0.986 0.986

BSTS 0.531 0.000 0.439 0.000
from DGP 0.675 0.675

Table 3.13: Gauge and potency for DGP 5
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ψ -2 3 -4 5 -6
P0.01 0.266 0.645 0.914 0.990 0.999

N = 80 Autometrics 0.255 0.355 0.981 0.996 0.994
Lasso 0.065 0.013 0.984 0.095 0.988
BSTS 0.022 0.056 0.798 0.827 0.951

N = 120 Autometrics 0.290 0.482 0.841 0.984 1.000
Lasso 0.254 0.007 0.590 0.019 0.998
BSTS 0.054 0.061 0.353 0.727 0.999

From DGP Autometrics 0.336 0.631 0.925 0.981 1.000
Lasso 0.967 0.963 1.000 1.000 1.000
BSTS 0.150 0.267 0.974 0.989 0.995

Table 3.14: Retention Rates for DGP 5, including from DGP

yt−1 x1 x2 x3 x4 x5

δ/βk 0.5 0.58 0.84 1.25 1.55 1.75
N = 80 Autometrics 0.017 0.438 0.423 0.277 0.377 0.377

Lasso 0.038 0.279 0.339 0.259 0.292 0.307
BSTS 0.024 0.441 0.572 0.448 0.624 0.541

N = 120 Autometrics 0.016 0.432 0.332 0.431 0.405 0.342
Lasso 0.038 0.272 0.314 0.333 0.313 0.354
BSTS 0.020 0.530 0.555 0.606 0.626 0.499

From DGP Autometrics 0.016 0.442 0.317 0.366 0.364 0.326
Lasso 0.021 0.266 0.329 0.255 0.286 0.297
BSTS 0.026 0.395 0.504 0.375 0.484 0.432

Table 3.15: RCMSE for DGP 4, including baseline

yt−1 x1 x2 x3 x4 x5

δ/βk 0.5 -0.58 0.84 -1.25 1.55 -1.75
N = 80 Autometrics 0.334 0.281 0.316 0.287 0.325 0.258

Lasso 0.120 0.463 0.656 0.778 1.074 1.225
BSTS 0.078 0.288 0.527 0.446 0.572 0.571

N = 120 Autometrics 0.273 0.292 0.303 0.296 0.341 0.257
Lasso 0.226 0.424 0.554 1.030 1.029 0.955
BSTS 0.097 0.405 0.510 0.603 0.722 0.496

From DGP Autometrics 0.051 0.342 0.239 0.330 0.334 0.330
Lasso 0.052 0.286 0.362 0.266 0.307 0.326
BSTS 0.071 0.342 0.482 0.384 0.411 0.408

Table 3.16: RCMSE for DGP 5, including from DGP
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Figure 3.5: Retention rates DGP 4
N = 80
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Figure 3.6: Retention Rates DGP 5
N = 80
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Figure 3.7: RCMSE for DGP 4
N = 80
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Figure 3.8: RCMSE for DGP 5
N = 80
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Figure 3.9: RCMSE Differences for DGP 4
N = 80
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Figure 3.10: RCMSE Differences for DGP 5
N = 80
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When considering DGP 4 results, when ψk > 0,∀k, the Lasso has both the highest measures

of potency and gauge. BSTS has the lowest gauge and Autometric’s gauge is close to the

significance level α. Going from N < T to N > T in most cases does not have a big impact on

the results. Both Autometrics and the Lasso have retention rates similar to their benchmark,

while the benchmark for BSTS gives quite different results. The graph for the RCMSE differences

is interesting, and shows there are almost no costs of search for the Lasso, and for Autometrics

there are in fact negative costs of search, meaning that sometimes parameter estimates are even

more accurate than in the theoretical best case scenario. This is likely due to adventitiously

selecting irrelevant variables which partly proxy a relevant variable which has not been selected,

which results in a smaller error variance.

When looking at DGP 5, it is clear that the algorithms struggle to varying degrees with

alternating signs. This is particularly true for the Lasso, with retention rates on regressors with

ψ > 0 being very low, irrespective of their magnitude, when the largest ψ in the experiment is

negative. The search costs of the Lasso also increase with |ψ|. The results for the gauge are

similar to previous experiments; the gauge for BSTS is low in every experiment, the gauge for

Autometrics is slightly higher than the significance level α, and the gauge for the Lasso varies

across the experiments. The costs of search for both Autometrics and BSTS, as measured by

the RCMSE differences, are quite low.

Comparing the results from DGP 4 to DGP 5 is striking. While intuitively and theoretically

the DGPs have nearly identical properties, the actual results vary drastically. Thinking about

non-centrality as the signal-to-noise ratio, whether a variable has a positive or negative non-

centrality should not have an impact on how often it is selected by an algorithm; it is the

magnitude of the the signal-to-noise ratio, |ψ|, which should influence an algorithm’s ability to

select that variable. Indeed, in the case of orthogonal variables alternating signs did not result

in potency and retention rate measures which were notably different from cases where the signs

were all the same.

It is immediately clear however that something peculiar is going on with DGP 5 when the

signs are alternating. DGP 4 has retention rates as expected are increasing with ψ. In DGP 5

while both Autometrics and BSTS have higher retention rates as |ψ| rises, the Lasso struggles

to select either of the regressors with ψ > 0. It should also be noted that while the retention

rates do increase with |ψ| for Autometrics and BSTS, the increase is not at all ‘uniform’ and

both Autometrics and BSTS are more successful at selecting variables with ψ < 0. The RCMSE

results illustrate the parameter estimates also vary across the DGPs. In DGP 4, the Lasso has

the lowest RCMSE for all variables, while it has the highest RCMSEs for all variables in DGP

5. Furthermore, the RCMSEs increase with ψ for the Lasso with alternating signs.

The reason why the Lasso has such difficulty selecting the regressors with negative signs is

due to the nature of the search its algorithm uses to identify non-zero coefficients. The algorithm

identifies the regressor which is ‘most significant’ and shrinks the coefficients of regressors which

are highly correlated with the identified regressor to zero. Certain implementations of the Lasso
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have built in features to account for this when the coefficients of the correlated regressors have the

same sign (i.e. see Hastie and Zou (2005)) but no algorithm exists to account for regressors which

have coefficients with opposite signs. In the case of DGP 5, the Lasso (correctly) identifies x5

with ψ5 = −6 as the most significant, and since x5 is highly correlated with x1, ..., x4, it shrinks

their coefficients to zero. Because the Lasso allows for variables which are significant ‘in the same

direction’ (i.e. in this case negatively significant), to be effectively ‘re-added’, variables x1 and

x3 which have respective non-centralities of -2 and -4 are selected, but there is no mechanism

for x2 and x4 with their positive coefficients to be ‘reconsidered’ for selection. If it was the case

that the most significant variable had a positive coefficient, then any variables with negative

coefficients would be shrunk to zero and not selected. That is, negative coefficients and positive

correlations are isomorphic to positive coefficients and negative correlations, so this result would

also hold if it parameter signs were switched.

The biggest takeaways from this second set of experiments are:

1. Selection when signs alternate produces remarkably different results, especially for the

Lasso.

2. When ψk > 0 ∀ k the Lasso selects a lot of both relevant and irrelevant variables, BSTS

does not select many of either, and Autometrics is somewhere in the middle.

3. In terms of their RCMSEs, the behaviour of Autometrics commencing from the GUM is

relatively similar to starting from the DGP. The retention rates for relevant variables in

both these cases are close to the theory-derived retention probabilities.

4. Remarkably, across all experiments, there is little difference in the performance of Auto-

metrics between N < T and N > T (N = 80 and N = 120).

5. As found in the previous set of experiments, search costs for Autometrics can sometimes

be negative.

6. The RCMSEs for Autometrics are relatively constant across all ψ and for the Lasso and

BSTS they are not.

3.5.4 Correlation Between all Regressors

The third set of experiments considers several cases where there is correlation between all regres-

sors. There are two different DGPs considered, which again vary according to the coefficients

β1, ..., β5 and therefore their respective non-centralities. Fixed regressors are used in all exper-

iments. These two DGPs are nested, as previously, in two different GUMs with N = 80 and

N = 120. In all experiments, T = 100. There are four separate experiments performed and

reported on. Let x′t = (x1,t, ..., xN,t). The DGPs take the following form:

yt = β0 + δyt−1 + β1x1,t + β2x2,t + β3x3,t + β4x4,t + β5x5,t + εt
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εt ∼ IN[0, 1]

xt ∼ INN [0,Ω]

with ωkk = 1, ωjk = 0.8 for k 6= j. The biggest difference between this set of experiments and

previous set is that here Ω is a full N × N matrix. As with the second set of experiments,

determining the relationship between ψk, βk and σβ̂k is difficult to do analytically because of

the correlation structure. Thus β1, ..., β5 in this set of experiment are set such that the aver-

age t-statistic for variable xk across simulations aligns with the non-centralities in the previous

experiments. More explicitly:

ψk = E[tβ̂k ] =
1

1000

1000∑
i=1

tβ̂k,i

where tβ̂k,i is the calculated t-statistic for β̂k in simulation i. Table 3.17 describes the two DGPs

considered, with the βks that correspond to the desired ψks.

The following table describes the two DGPs considered, from hereon referred to as DGP 6

and 7:

x1 x2 x3 x4 x5

DGP 6 βk 0.4 0.6 0.9 1.1 1.25
ψk 2 3 4 5 6

DGP 7 βk -0.4 0.6 -0.9 1.1 -1.25
ψk -2 3 -4 5 -6

Table 3.17: DGP specification for experiments with correlation between all regressors

The following tables report the potency, gauge, retention rates and RCMSE for DGP 6 and

DGP 7. The lowest gauge, highest potency and lowest RCMSE are in bold. Again in this set

of experiments the significance level for Autometrics was set to α = 0.01. The results are also

graphed.

N = 80 N = 120
Potency Gauge Potency Gauge

Autometrics 0.736 0.016 0.718 0.015
from DGP 0.798 0.798

Lasso 0.909 0.182 0.894 0.131
from DGP 0.993 0.993

BSTS 0.653 0.004 0.631 0.005
from DGP 0.764 0.764

Table 3.18: Gauge and potency for DGP 6
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ψ 2 3 4 5 6
P0.01 0.266 0.645 0.914 0.990 0.999

N = 80 Autometrics 0.262 0.439 0.985 0.996 0.996
Lasso 0.766 0.778 1.000 1.000 1.000
BSTS 0.116 0.251 0.923 0.984 0.990

N = 120 Autometrics 0.212 0.524 0.890 0.966 0.999
Lasso 0.560 0.924 0.991 0.998 0.999
BSTS 0.093 0.285 0.810 0.971 0.997

From DGP Autometrics 0.327 0.729 0.938 0.995 1.000
Lasso 0.969 0.994 1.000 1.000 1.000
BSTS 0.281 0.554 0.990 0.998 0.999

Table 3.19: Retention Rates for DGP 6

yt−1 x1 x2 x3 x4 x5

δ/βk 0.5 0.4 0.6 0.9 1.1 1.25
N = 80 Autometrics 0.025 0.318 0.313 0.190 0.241 0.250

Lasso 0.041 0.230 0.347 0.257 0.349 0.315
BSTS 0.036 0.318 0.404 0.386 0.386 0.348

N = 120 Autometrics 0.023 0.329 0.227 0.263 0.254 0.232
Lasso 0.033 0.254 0.313 0.376 0.462 0.389
BSTS 0.026 0.306 0.370 0.430 0.428 0.346

From DGP Autometrics 0.024 0.307 0.219 0.259 0.255 0.230
Lasso 0.029 0.192 0.234 0.182 0.204 0.211
BSTS 0.036 0.275 0.361 0.258 0.337 0.314

Table 3.20: RCMSE for DGP 6

N = 80 N = 120
Potency Gauge Potency Gauge

Autometrics 0.718 0.014 0.707 0.014
from DGP 0.778 0.778

Lasso 0.787 0.154 0.823 0.131
from DGP 0.986 0.986

BSTS 0.512 0.001 0.401 0.001
from DGP 0.657 -0.657

Table 3.21: Gauge and potency for DGP 7
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ψ -2 3 -4 5 -6
P0.01 0.266 0.645 0.914 0.990 0.999

N=80 Autometrics 0.230 0.380 0.988 0.993 0.998
Lasso 0.507 0.466 0.999 0.963 1.000
BSTS 0.011 0.041 0.812 0.791 0.907

N=120 Autometrics 0.253 0.510 0.803 0.972 0.999
Lasso 0.603 0.683 0.904 0.926 1.000
BSTS 0.037 0.051 0.303 0.641 0.971

From DGP Autometrics 0.330 0.649 0.931 0.980 1.000
Lasso 0.964 0.967 1.000 1.000 1.000
BSTS 0.103 0.242 0.965 0.983 0.993

Table 3.22: Retention Rates for DGP 7

yt−1 x1 x2 x3 x4 x5

0.5 -0.4 0.6 -0.9 1.1 -1.25
N = 80 Autometrics 0.059 0.286 0.267 0.187 0.224 0.246

Lasso 0.078 0.257 0.415 0.330 0.514 0.532
BSTS 0.111 0.188 0.358 0.327 0.405 0.438

N = 120 Autometrics 0.070 0.328 0.230 0.221 0.253 0.232
Lasso 0.121 0.257 0.370 0.526 0.564 0.421
BSTS 0.147 0.272 0.362 0.458 0.515 0.359

From DGP Autometrics 0.059 0.246 0.168 0.237 0.236 0.232
Lasso 0.059 0.205 0.256 0.190 0.216 0.229
BSTS 0.084 0.236 0.344 0.281 0.294 0.298

Table 3.23: RCMSE for DGP 7
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Figure 3.11: Retention rates DGP 6
N = 80
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Figure 3.12: Retention Rates DGP 7
N = 80
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Figure 3.13: RCMSE DGP 6
N = 80
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Figure 3.14: RCMSE DGP 7
N = 80
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Figure 3.15: RCMSE differences DGP 6
N = 80
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Figure 3.16: RCMSE differences DGP 7
N = 80

53



First considering the results from DGP 6, the Lasso appears to be effective at identifying

relevant variables but also tends to select many irrelevant variables overall, as evidenced by the

high gauge. When ψ > 3, the retention rates for all three algorithms are very high. The gauge

for Autometrics is slightly higher than the significance level α, and almost 0 for BSTS. The

RCMSE are generally highest for BSTS and lowest for Autometrics. Search costs are lowest for

Autometrics.

With the DGP 7 results, the retention rates are similar to those of DGP 6 but different

in a subtle and important way. Both the Lasso and BSTS struggle to pick up variables with

ψ > 0. Similarly, the Lasso struggles to estimate the parameters on variables with ψ > 0. These

difficulties are not as pronounced as in the previous set of experiments, but clear nonetheless.

While the Lasso and BSTS struggle increasingly to estimate the parameter estimates as |ψ|
increases, Autometrics has RCMSEs which are low and consistent for all variables.

Comparing DGP 6 and DGP 7, several important differences arise. While in theory the DGPs

are very similar with almost identical properties, the results vary. The Lasso and BSTS again

appear to struggle with alternating signs both in terms of how effectively they pick up relevant

variables and how accurate the parameter estimates are. The measures of gauge are consistent

across all algorithms in both DGP 6 and DGP 7; again BSTS with the lowest gauge near 0, the

Lasso with the highest in the range of 0.13-0.18, and Autometrics in the middle with gauges

slightly above the significance level.

An additional observation is that the Lasso struggled less when dealing with alternating

signs and all variables correlated in this set of experiments, than it did when only the relevant

regressors were correlated in the previous set of experiments. This is likely due to the fact that

in this set of experiments the correlation between all variables was ωjk = 0.8 and in the previous

set of experiments the correlation between relevant variables was ωjk = 0.9.

The takeaways from this set of experiments are:

1. Alternating signs matter a lot for the Lasso, a reasonable amount for BSTS and a little for

Autometrics. Note that negative coefficients and positive correlations are isomorphic to

positive coefficients and negative correlations, so this result would also hold if it parameter

signs were switched.

2. The Lasso is excellent at selecting relevant variables when all the signs are the same, but

not very good at excluding irrelevant variables.

3. The gauge for Autometrics is consistently slightly above the significance level for all exper-

iments.

4. BSTS generally selects very sparse models, which do not include many relevant or irrelevant

variables.

.
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3.6 Results Summary

Evaluating the algorithms up until this point has focused on comparing the results from model

selection conditional on a known correlation structure between the regressors. Therefore, when

thinking about what the results in the previous section say about empirical model selection,

the correlation structure of the variables under consideration must be taken into account. For

example, if a researcher used Autometrics or the Lasso on a set of orthogonal variables, she would

know that the model selected by Autometrics included α% of the irrelevant variables, and the

model selected by the Lasso included 15-20% of the irrelevant variables. Additionally she would

know there was a 99% chance that a variable with a signal-to-noise ratio of 4 was included in

the selected model. These statements rely on orthogonality however, and given that the world

is dynamic, full of relationships and extremely interdependent, orthogonal results on their own

are of limited use. Because a researcher never knows the true DGP, she cannot possibly know

what the true correlation structure is. Thus, to truly be able to interpret and say something

meaningful about the effectiveness of model selection empirically, it is vital to understand how

different ‘states of nature’ influence the results. Since a researcher can never know the true DGP

and therefore cannot qualify results in this manner, ideally model selection results should not

depend on the correlation structure.

A desirable property of model selection would be for a variable with a given ‘significance’,

which can be measured by its non-centrality, to be selected at the same level regardless of the

properties of the other variables in the GUM. It is for this reason that in each of the three sets

of experiments, β1, ..., β5 were chosen so that non-centralities are the same and retention rates

and RCMSEs are comparable across experiments. Looking at how results vary across the three

different correlation structures is therefore a straightforward way to analyze how orthogonality

or otherwise influences results across values of ψ. Table 3.24 shows a summary of the results for

DGP 3, DGP 4, and DGP 6 for N = 80. Similarly, Table 3.25 shows the results for DGPs with

alternating signs. Note that results from alternating signs when the regressors are orthogonal

are largely the same as when the signs are all the same, and were not reported earlier.
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Autometrics Lasso BSTS
ψ Orthogonal Some Corr All Corr Orthogonal Some Corr All Corr Orthogonal Some Corr All Corr
2 0.216 0.333 0.262 0.552 0.977 0.766 0.003 0.179 0.116
3 0.414 0.568 0.439 0.869 0.990 0.778 0.136 0.340 0.251
4 0.948 0.988 0.985 0.974 1.000 1.000 0.325 0.949 0.923
5 0.989 0.998 0.996 0.995 1.000 1.000 0.562 0.993 0.984
6 0.995 0.998 0.996 0.996 1.000 1.000 0.781 0.991 0.99

Potency 0.712 0.777 0.736 0.877 0.993 0.909 0.361 0.690 0.653
Gauge 0.018 0.014 0.016 0.179 0.108 0.182 0.001 0.000 0.004

Table 3.24: Retention rate, potency and gauge summary results for all positive ψ

Autometrics Lasso BSTS
ψ Orthogonal Some Corr All Corr Orthogonal Some Corr All Corr Orthogonal Some Corr All Corr
-2 0.240 0.255 0.230 0.608 0.065 0.507 0.007 0.022 0.011
3 0.476 0.355 0.380 0.74 0.013 0.466 0.043 0.056 0.041

-4 0.928 0.981 0.988 0.981 0.984 0.999 0.349 0.798 0.812
5 0.993 0.996 0.993 1.000 0.095 0.963 0.943 0.827 0.791

-6 0.996 0.994 0.998 0.998 0.988 1.000 0.792 0.951 0.907
Potency 0.727 0.716 0.718 0.865 0.429 0.787 0.427 0.531 0.512

Gauge 0.018 0.014 0.014 0.176 0.088 0.154 0.000 0.000 0.001

Table 3.25: Retention rate, potency and gauge summary results for alternating ψ
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These two tables contain many interesting insights. The results for Autometrics do not vary

significantly across the different correlation structures, both when ψk > 0,∀k and when the signs

of ψ alternate. As |ψ| increases, correlation matters less and results converge to 1. The gauge is

also consistent across correlation structures, fluctuating between 0.014 and 0.018. The Lasso, on

the other hand, exhibits a very different story. While when ψk > 0,∀k, and ψ > 3 the retention

rates are consistent across the correlation structures, this is not the case when the signs are

alternating. In fact, in the case of alternating signs, the Lasso picks up variable xk with ψk = 3,

74% of the time when the regressors are orthogonal, compared to 1% of the time when there

is correlation between the relevant regressors, and 46% of the time when there is correlation

between all regressors. The gauge in the Lasso experiments is also remarkably varied, ranging

between 0.09 and 0.18. These discrepancies and their implications are substantial. The same is

true but to a lesser extent for BSTS where there is notable variation in retention rates across the

three correlation structures, especially when |ψ| < 4. The gauge for BSTS, on the other hand,

has almost no variation.

Figure 3.17 provides an interesting visual representation of the results in the previous two

tables. The potency and gauge are plotted against each other for both N = 80 and N =

120, meaning that a total of twelve experiments are graphed. The experiments graphed have

properties such that one would expect MC results to be similar. The ideal algorithm would have

all of its points bunched in the upper left corner of the graph. As can be easily seen, the Lasso

and BSTS points are decidedly not in the upper left quadrant. In fact, the Lasso has points all

over the graph. While BSTS consistently achieves low gauges, it fares poorly when it comes to

potency. Autometrics points are grouped together closely. While it may not always have as high

a potency as the Lasso, or as low a gauge as BSTS, it does reasonably well in both and perhaps

more importantly is consistent in the sense that the correlation structure of the regressors has

no bearing on the results.

Figure 3.17: Scatter plot of potency vs. gauge across all experiments
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3.6.1 What do the Monte Carlo simulation results say about empirical

model selection?

As should be clear by now, model selection is difficult to evaluate empirically; it is impossible to

judge how ‘good’ a selected model is because it is impossible to know what to be judging against.

This is why the results from MC simulations are so important and useful, and in particular why

analyzing what happens when correlation structures change is vital. Because a modeller can

never know what the properties of the relevant variables are, to draw valuable insight from

selected models it is key that model selection not be reliant on what those properties are. With

this in mind, the results in this study imply that a modeller performing model selection using

the three algorithms can assume the following:

Autometrics

1. There are slightly higher than 100(α)% of the total number of irrelevant variables included

in the selected model.

2. The probability that a variable with ‘significance’, in signal-to-noise terms of ψ has been

selected can be approximated by the theoretical retention probability formula.

3. The costs of inference, or equivalently the parameter estimate accuracy, does not vary

according to how ‘significant’ a variable is. (Bias correction has not been employed here,

but studies show that this a costless way of improving parameter accuracy. See Hendry

and Krolzig (2005))

4. The costs of search for using Autometrics are minimal and sometimes even negative. That

is, a researcher will ‘lose’ almost nothing employing Autometrics, but stands to gain con-

siderably.

Lasso

1. There can be anywhere in the range of 8-20% of the total number of irrelevant variables

included in the selected model. When N = 120, this implies keeping up to 24 irrelevant

variables, compared to 6 relevant variables.

2. If all the important variables in the model happen to be relevant to the dependent variables

in the same ‘direction’ (i.e. all matter in either a positive or negative way for the dependent

variable), then the Lasso will identify and select them with a high probability. In particular,

a variable with a signal-to-noise ratio of ψ > 3 has over a 97% change of being selected.

3. The probability of selecting a relevant variable with a lower signal-to-noise ratio varies

according to how correlated it is with the other variables in the model. For example the

probability of selecting a variable with a signal-to-noise ratio of ψ = 2 can be anywhere in

the range of 55-98%.

4. Parameter estimates become increasingly inaccurate the more ‘significant’ a variable is.
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BSTS

1. There are almost no irrelevant variables (around 0.1%) included in the selected model.

2. This sparsity has an impact on the inability to keep relevant variables.

3. BSTS is affected by the correlation structure of the regressors, and the signs of the coeffi-

cients.
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Chapter 4

An Application: Using Automatic

Model Selection for Nowcasting

In this chapter, automatic model selection is applied to the problem of nowcasting. It is important

to note that while nowcasting may be a fruitful application of automatic model selection, now-

casting (or forecasting) is a fundamentally different problem with a different objective than model

selection. While in a stationary world with no breaks the best in-sample model produces the

best forecast, this is not the case in a non-stationary world. When dealing with non-stationarity,

poor in-sample models can outperform in forecasting, and poor forecasting models can outper-

form in-sample models. Therefore this section is included to show an interesting application

of Autometrics, the Lasso and BSTS and the results should be interpreted separately from the

previous section.

4.1 Google Search Query Data

The amount of information Google collects through search queries is difficult to comprehend.

According Amit Singhal, a Senior Vice President at Google, as of August 2012 Google was

processing 100 billion searches every month.1 That means there are over 3.5 billion Google

searches each day and over 1 trillion Google searches per year. People turn to Google to get

information on just about every aspect of their lives, so it makes sense that Google search queries

contain large amounts of information about the state of the world. It is easy to think of cases

where Google search queries may contain information about macroeconomic indicators. For

example, if an individual loses their job, one of the first places they are likely to go is Google

to determine what their unemployment benefits are. Google is also one of the first places they

would turn to begin searching for a new job. Thus, Google search queries potentially tell a

1According to tech blogger Danny Sullivan (2012), this was revealed by Amit Singhal at a press event in San
Francisco on August 8th 2012, and is a widely quoted figure.
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story about the current state of unemployment in the economy. Similarly, individuals looking

to buy new cars are likely to turn to Google to research their options before actually going

to a dealership. Google search queries related to new cars could therefore provide insight into

current consumer sentiment. Examples of studies which have endeavored to use Google search

information for nowcasting and forecasting include D’Amuri and Marcucci (2012), Askitas and

Zimmermann (2009) and Webb (2009).

Google has recently developed several online tools, namely Google Trends and Google Cor-

relate, which allow users to analyze what people have been Googling. Google Trends allows

users to enter any search term and see the frequency with which it has been searched over time.

Google Correlate allows users to enter a search query and see which other search queries are most

correlated with it. Google Correlate has an additional feature which allows the user to enter their

own time series and provides the user with the search queries which are most correlated with

their submitted time series (Mohebbi et al., 2011).2

4.1.1 Google Flu Trends

One of the first ways in which the information contained in Google search query data was

harnessed was with the Google Flu Trends application. The Center for Disease Control (CDC)

in America publishes statistics on the proportion of doctor or hospital visits due to influenza-like

illness symptoms (ILI) every week.3 This data is a leading indicator for the prevalence of the

flu in the United States. The CDC, however, releases this data at a two-week lag. By economic

standards two weeks is not long; most economic statistics are released with at least this much of

a lag. For flu epidemics, however, two weeks can be a long time and there can be significant costs

to this delay. Action to combat the flu in the form of vaccination, research and public awareness

begins later than is ideal. There is therefore obvious value in knowing about a flu outbreak

or epidemic as it is beginning. Google developed the Google Flu Trends (GFT) tool with the

objective of using Google search queries to accomplish exactly this. GFT produced forecasts -

or more precisely nowcasts - using Google search queries to estimate the current measure of ILI.

Initially, these nowcasts turned out to be surprisingly accurate.

Google stopped publishing their ILI estimates in 2014, largely because Google Flu Trends

performed poorly during the 2013 flu season. While Google never fully disclosed the algorithm

behind Google Flu Trends directly, the general approach was outlined in a paper in Nature

(Ginsberg et al., 2009). In this section, Google Flu Trends is revisited, and nowcasts are made

using the three algorithms already analyzed. Again, it should be stressed that while in this

section automatic model selection algorithms are used to produce nowcasts, model selection itself

is a fundamentally different problem, with a different objective, than forecasting or nowcasting.

Thus, while nowcasting is an interesting and informative exercise, comparing model selection

2Google Trends is available at https://www.google.co.uk/trends and Google Correlate is available at https:
//www.google.com/trends/correlate.

3Data is available to download via the FluView Interactive application available at http://gis.cdc.gov/

grasp/fluview/fluportaldashboard.html
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algorithms for their ‘model selecting ability’ using the accuracy with which they are capable of

nowcasting in these sections should be done cautiously, if at all.

4.2 The Data

Nowcasting ILI using automatic model selection commences in a similar way to model selection

in general. The first step is to formulate the GUM, which includes all variables which may be

predictors of ILI at time t. An important question then is to consider what data is available at

time t which may be relevant for nowcasting ILI. Here, the GUM includes both past ILI values,

and relevant Google Correlates, which are explained in this section.

4.2.1 Influenza-like-Illness Data

As mentioned, the CDC releases weekly data on the proportion of GP visits due to influenza-like

illness with a two week lag. Weeks are measured from Sunday-Saturday and are numbered either

1-52 or 1-53, depending on how many weeks are in a particular year. Week 1 in a given year

is the first week which is entirely in the new year; so Week 1 2016 went from Sunday January

3-Saturday January 9th. New data is published on Fridays and gives the ILI from two weeks

earlier. For example, the incidence of ILI for Week 8 2016 which went from Sunday February

21-Saturday February 27 was released on Friday in Week 10 2016 (March 4). This means that if

a nowcast for ILI for Week t were to be made on or after Friday of Week t, ILI data up to Week

t− 2 is available. Therefore, the GUM can include up until the second lag of ILI.

4.2.2 Google Correlate Data

The Google search terms which are most correlated with ILI, called the correlates, as well as

their first lags, are also relevant for nowcasting. To find these correlates over a particular period,

the weekly ILI time series corresponding to the desired time period was entered into the Google

Correlate application. The time period differed with the two different nowcasting approaches

taken, which will be explained below. Conveniently, like ILI, Google Correlate measures weeks

from Sunday-Saturday. Google Correlate produces a list of the 100 search queries which are most

correlated with ILI for the given sample, and also provides the de-meaned and standardized search

volume for those 100 search queries as weekly time series. The search volume for a particular

query is the proportion of total search queries throughout a given week which were for that

query. As a practical matter, Google Correlate data is available to the public with a lag of

several weeks. Acknowledging, however, that Google search query data is collected in real time,

and in theory would be available for nowcasts, the nowcasting done here assumes that real time

data is available. This approach is line with what was done with the original Google Flu Trends

tool as well, making the results here comparable.
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Figure 4.1: Proportion of GP visits due to influenza-like illness

4.3 Nowcasting with Autometrics, Lasso and BSTS

Nowcasting here is evaluated using both in-sample and out-of-sample results. In-sample now-

casting refers to a estimating a single model using data from the entire sample period. Fitted

values for the sample period are the nowcasts. Out-of-sample nowcasting refers to selecting a

holdout period, estimating a model which does not use the data from the holdout period, and

using the estimated model to find fitted values for the holdout period. Finding in-sample and

out-of-sample nowcasts is relatively straightforward using Autometrics and Lasso. As likely be-

came apparent when the algorithms were described, BSTS is a much more complicated algorithm.

Its main purpose, however, is nowcasting and there are features built into the BSTS R package

which allow this to be done almost automatically. The reliance of BSTS on Kalman filtering and

smoothing, however, means that at this point it is not capable of producing true out-of-sample

nowcasts. Therefore, only in-sample nowcasts are results for BSTS.

4.3.1 In-sample Nowcasts using Autometrics and Lasso

The sample period used to find in-sample nowcasts went from Week 5 2010 to Week 4 2016 (the

week beginning January 31 2010 to the week beginning on January 24 2016). The ILI time series

was downloaded from the CDC website for this time period, and the observations are denoted

ILI1, ..., ILI313 since there are 313 observations in the sample period. The GUM included any
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Search query Correlation with ILI
x1 how to get over the flu 0.942
x2 get over the flu 0.942
x3 how to get rid of the flu 0.932
x4 get rid of the flu 0.927
x5 flu fever 0.925
x6 flu duration 0.924
x7 type a influenza 0.924
x8 getting over the flu 0.919
x9 tamiflu and pregnancy 0.918
x10 influenza type a 0.917

Table 4.1: Top 10 correlates and their correlation with ILI

variables potentially relevant for modeling ILI. A quick glance at the graph of ILI in Figure 4.1

indicates it is likely following an autoregressive process. ILI peaks in the winter around Christmas

and is at its lowest in the summer, indicating that seasonality is important. Therefore, lags 2-53

of ILI were included in the GUM. Admittedly, this is not perfect as the number of weeks in a

year varies and, for example, Christmas which likely is relevant to ILI can fall in a different week

year-to-year. The other set of regressors in the GUM were the top 100 correlates, and their first

lags. These were found by entering the ILI time series for the sample period into the Google

Correlate application. Let x1,t, x2,t, ..., x100,t denote the search volumes of the top 100 correlates

at time t. Table 4.1 shows the 10 search queries most correlated with ILI for the sample period.

To give an example of the correlation structure of the Google correlates, the correlation matrix

Ω of the top ten correlates is:

Ω =



1.00 0.99 0.98 0.98 0.96 0.96 0.94 0.96 0.93 0.94

0.99 1.00 0.98 0.98 0.97 0.97 0.95 0.97 0.94 0.95

0.98 0.98 1.00 1.00 0.96 0.96 0.94 0.95 0.93 0.94

0.98 0.98 1.00 1.00 0.96 0.96 0.94 0.96 0.93 0.94

0.96 0.97 0.96 0.96 1.00 0.97 0.92 0.96 0.94 0.93

0.96 0.97 0.96 0.96 0.97 1.00 0.93 0.96 0.95 0.93

0.94 0.95 0.94 0.94 0.92 0.93 1.00 0.92 0.96 0.99

0.96 0.97 0.95 0.96 0.96 0.96 0.92 1.00 0.93 0.93

0.93 0.94 0.93 0.93 0.94 0.95 0.96 0.93 1.00 0.95

0.94 0.95 0.94 0.94 0.93 0.93 0.99 0.93 0.95 1.00


The top 100 correlates, their first lags, and the lagged ILIt, formed the GUM:

ILIt = α+

53∑
i=2

γiILIt−i +

1∑
i=0

100∑
j=1

βj,ixj,t−i + ut
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Autometrics and the Lasso were applied to the above GUM. A significance level α must be

selected when using Autometrics, and it is not immediately clear which level should be chosen in

this case. This problem is discussed in more detail below, but α = 0.01 was used. Autometrics

returned a model which had 60 parameters selected. Using 10-fold cross validation to select the

tuning parameter λ, Lasso selected a model with 29 parameters. The nowcasts produced by

Autometrics and the Lasso are the fitted values, and are plotted against ILI in Figure 4.4. Table

4.2 displays the mean squared errors, as calculated by:

MSE =
1

52

313∑
t=262

(ILIt − ÎLIt)2

where ÎLIt is the fitted value for ILI at time t. Since nowcasts were made for the week of February

1 2015 to the week of January 24 2016, there are 52 nowcasts in total, denoted ÎLI262, ..., ÎLI313

to reflect that they correspond to the last 52 observations in the sample.

4.3.2 In-sample Nowcasts using BSTS

While it is fairly easy to understand how Autometrics and the Lasso calculate their nowcasts,

BSTS is more complicated. BSTS deals with time series components and regression components

separately, so the first step is determining which time series components, and which regression

components to include in the system. Based on the graph of ILI in Figure 4.1, a local linear

trend, and seasonal component with S = 53 are used to model the time series dynamics. The

regression component consists of the 100 Google correlates and their first lags, denoted by xt

and xt−1 respectively. Using the state space representation as earlier, ILI can then be described

by the following system, which is summarized by ‘time series + regression components’:

ILIt = µt + τt + β′1xt + β′2xt−1 + εt

µt = µt−1 + γt−1 + ut

γt = γt−1 + vt

τt = −
52∑
s=1

τt−s + wt

Operationally, BSTS first determines ‘how much’ of ILIt is explained by the local linear trend

and seasonality components using Kalman filtering, smoothing and Bayesian data augmentation.
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Figure 4.2: Contributions to ILI by state

Thus, the following system is relevant for the time series component of the algorithm:

ILIt = µt + τt + εt

µt = µt−1 + γt−1 + ut

γt = γt−1 + vt

τt = −
52∑
s=1

τt−s + wt

which is exactly as above, but with the regression component subtracted out. BSTS subtracts

the time series component from ILI to end up with ILI∗. Then a spike-and-slab regression is

used with ILI∗ as the dependent variable to determine which of the Google correlates (and their

first lags) are relevant for explaining what is not explained by time series components. From

the results of the spike-and-slab regression the posterior inclusion probabilities are calculated for

each of the Google correlates. Figure 4.2 provides a graphical illustration of the contributions

of each state. Note that the lines are fuzzy because the draws are graphed. Figure 4.3 shows

Google correlates which have posterior inclusion probability greater than 0.15.

As a Bayesian algorithm, BSTS does not, in fact, calculate fitted values; it derives the pre-

dictive posterior distribution for the response variable, and subsequently produces a sample of

draws from this distribution (Scott and Varian, 2014). Nowcasts can then be found by taking

the mean across these draws. Figure 4.4 graphs the BSTS nowcasts and Table 4.2 shows the

mean squared errors of these nowcasts.

4.3.3 Comparing In-Sample Nowcasts

Looking at the graphs in Figure 4.4, all three algorithms produce reasonably accurate nowcasts.

Of the three, the Lasso seems to struggle the most. This is confirmed by the MSEs in Table 4.2.
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Figure 4.3: Posterior inclusion probabilities for p > 0.15. White bars indicate the coefficient sign
is positive and black bars indicate the coefficient sign is negative.

MSE Variables Selected
Autometrics 0.003 60

Lasso 0.008 26
BSTS 0.004 10

Table 4.2: MSEs from in-sample nowcasting

The number of regressors selected by each of the algorithms, or in the case of BSTS, the number

of variables with inclusion probability greater than 0.15, is also shown in Table 4.3. Table 4.2

provides a full list of the variables selected by each algorithm.

Autometrics has the smallest MSE and selects the largest number of variables with 60 of the

252 possible variables selected. BSTS identifies only 10 variables which have posterior inclusion

probabilities greater than 0.15. Comparatively, the Lasso’s nowcasts are decidedly less accurate.

The fact that the Lasso selected half as many variables as Autometrics seems to point to a

situation where there is high degree of correlation between the regressors, and where some of

these variables are relevant in opposite ways. The table and graphs show that while all three

algorithms are reasonably effective and nowcast with a high degree of accuracy, Autometrics does

particularly well.

4.3.4 Out-of-sample Nowcasting with Autometrics and the Lasso

In-sample nowcasting or forecasting where the GUM is the starting point obviously has the

potential to be very accurate due to the fact that the training set and the validation set are
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BSTS Lasso Autometrics

flu type a 1 anas barbariae anas barbariae
cough fever breaking a fever breaking a fever
get rid of the flu cold fever child with flu
home remedies for flue cough fever cold fever
cough rememdies cough remedies cold or flu
tamiflu dose cure a cough cough fever 1
flu how long dangerous fever cure a cough
is the flu contagious flu medicines cure a cough 1
how to cure the flu flu medicines 1 dangerous fever
how long does fever last with flu ILI 14 flu a

ILI 15 flu a 1
ILI 16 flu aches
ILI 17 flu aches 1
ILI 2 flu and pregnancy
ILI 28 flu how long 1
ILI 29 flu recovery
ILI 3 flu remedies 1
ILI 50 flu treatments
ILI 51 flu type a
influenza treatment 1 flu type a 1
tamiflu and breastfeeding generic tamiflu 1
tamiflu drug 1 get rid of the flu
tamiflu pediatric dosing home remedies for flu
tamiflu side effects how long contagious
treat a fever how long does fever last with flu
type a flu how long does it take to get over the flu

how long is the flu contagious
how long is the flu 1
how to cure the flu
how to cure the flu 1
how to get rid of flu 1
how to treat the flu 1
ILI 2
ILI 3
ILI 30
ILI 4
ILI 5
ILI 6
ILI 9
influenza a 1
influenza type a
is the flu contagious
is the flu contagious 1
medicine for the flu 1
over the counter flu
remedies for flu 1
symptoms of pneumonia
tamiflu and alcohol 1
tamiflu and pregnancy
tamiflu and pregnancy 1
tamiflu drug 1
tamiflu side effects
treat a fever
treat a fever 1
treat the flu
treat the flu 1
treating the flu 1
type a flu 1

Table 4.3: Selected regressors
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Figure 4.4: In-sample nowcasts

the same. The example of an extreme case of using OLS when T = N , and the fitted values

exactly correspond to the true values comes to mind. It is important to consider how nowcasts

perform out-of sample, as this reflects the situation in which nowcasts would be made in reality.

A nowcast for time t is based on a model estimated using only the information available at t is

a better reflection of how nowcasting would be useful in practice.

To calculate out-of-sample nowcasts using automatic model selection there are several deci-

sions that need to be made. First it must be decided whether the algorithm should reselect a

model from the GUM for each successive nowcast. If a new model is estimated for each succes-

sive nowcast, another question is whether a rolling or recursive window is more appropriate for

determining the sample period. An issue specific to using Google Correlates is whether a new

set of correlates should calculated from the Google Flu Trends application for each new nowcast.

The following explanation is easier to understand with reference to Table 4.7. The chosen

sample period went from Week 5 2010 to Week 4 2016 (the week beginning January 31 2010 to

the week beginning on January 24 2016) from which there are 313 observations. The ‘modified

holdout’ period for which nowcasts were made went from Week 5 2015 and Week 4 2016 (the

week beginning February 01, 2015 to the week beginning January 24, 2016). These nowcasts

are denoted ÎLI262, ..., ÎLI313. The top 100 Google correlates were found by entering the ILI

time series for the sample period excluding the holdout period (ILI1, ..., ILI261) into the Google
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Correlate application. The top 100 Google correlates are denoted x1,t, ..., x100,t. Variables were

selected once and selection was made using only the data in the subsample which excluded the

holdout period. So, variables were selected from the following GUM:

ILIt = α+

53∑
i=2

γiILIt−i +

1∑
i=0

100∑
j=1

βj,ixj,t + ut

for t = 1, ..., 261. The model estimated from the GUM was used to produce the first nowcast,

for the week of Feb 1, 2015, denoted ÎLI262. The reason why the holdout period is ‘modified’

is because for each successive nowcast, an additional observation was added to the sample and

a new model was estimated by OLS. The variables included in this model were the variables

initially selected by the GUM. Let z1, ..., zL denote the L regressors selected initially from the

GUM. Nowcast ÎLI262+k was found by estimating the following model, for k=1,..,51:

ILIt = α+

L∑
i=1

ξizi,t + vt, t = 1, ..., 262 + k

Therefore, new estimates for the ξis were made to find the new model used to produce each

nowcast. The fitted value ÎLI262+k from the kth model estimated is the nowcast. This process

was used for both Autometrics and the Lasso. For Autometrics, the significance level α was set

to 0.01. In the case of Lasso, selecting variables once and using OLS with the selected variables

as the regressors for the subsequent nowcasts is equivalent to setting the tuning parameter λ = 0.

The nowcasts and ILI produced by Autometrics and Lasso are graphed in Figure 4.5. The nowcast

MSEs, and the number of variables selected by each algorithm is in Table 4.4. Autometrics and

Lasso perform similarly, with Lasso achieving a slightly smaller MSE than Autometrics.

MSE Variables Selected
Autometrics 0.016 33

Lasso 0.014 30
Average 0.005

Table 4.4: MSEs from out-of-sample nowcasting

The in-sample nowcast graphs indicate that the Autometrics nowcasts tend to be above the

true ILI, and that the Lasso’s tend to be below the true ILI. A graph of the residuals in Figure

4.6 makes this a little clearer. This suggests that perhaps the average of the two nowcasts would

produce an even more accurate nowcast. Let ÎLIave,t denote this average, ÎLIauto,t denote the

Autometrics nowcast and ÎLI lasso,t denote the Lasso nowcast as calculcated above. The new

average nowcast for time t is:

ÎLIave,t =
1

2
(ÎLIauto,t + ÎLI lasso,t)

70



ILI Nowcast 

2015-2 3 4 5 6 7 8 9 10 11 12 2016-1 2

1

2

3

4 Autometrics

ILI Nowcast 

ILI Nowcast 

2015-2 3 4 5 6 7 8 9 10 11 12 2016-1 2

1

2

3

4 Lasso
ILI Nowcast 

ILI Average 

2015-2 3 4 5 6 7 8 9 10 11 12 2016-1 2

1

2

3

4 Average

ILI Average 

Figure 4.5: Out-of-sample Nowcasts
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Figure 4.6: Residuals from Autometrics and Lasso nowcasts
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Figure 4.7: The timing of in-sample nowcasts and ILI releases
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The average nowcast is also graphed against ILI in Figure 4.5. The MSE of the average is 0.005,

which is less than half the MSE of both Autometrics and Lasso individually.

4.3.5 Predicting ILI with Autometrics and the Lasso

Given that both Autometrics and the Lasso seem reasonably effective at producing accurate

nowcasts, an interesting question is whether actual predictions of ILI would be useful. To test

this, forecasts of ILI were made using Autometrics and the Lasso. The forecasting here was done

in much the same way as nowcasting was done in the previous section. The sample period from

Week 5 2010 to Week 4, 2016 (the week beginning January 31 2010 to the week beginning on

January 24 2016) from which there are 313 observations. Forecasts were made for the 52 weeks

between Week 5 2015 and Week 4 2016 (the week beginning February 01, 2015 to the week

beginning January 24, 2016), and are denoted ĨLI262, ..., ĨLI313. The top 100 Google correlates

were found by entering the ILIt+1 time series for the sample period into the Google Correlate

application. These correlates, then, are the search terms at time t which are most correlated

with ILI at t + 1 and are denoted x∗1,t, ...x
∗
100,t. Again, variables were only selected once, using

only the data in the sample period. Thus, the initial model was selected from the GUM:

ILIt+1 = α+

53∑
i=2

γiILIt−i +

1∑
i=0

100∑
j=1

βj,ix
∗
j,t−i + ut

The significance level was again set to α = 0.01 for Autometrics. The first forecast was made for

ILI262 and was produced using the model selected from GUM. The fitted value ĨLI262 from this

model is the reported forecast. For the 51 subsequent forecasts, OLS was used to re-estimate

a model using the variables selected by the GUM, and using the information available at the

time the forecast was made. For example, the forecast for ILI263 was made using information

available at t = 262. If z1, ..., zL were L the variables selected from the GUM, then to produce

ĨLI262+k, the following model was estimated by OLS:

ILIt+1 = α+

L∑
i=1

ξizi,t + vt, t = 1, ..., 260 + k

The k fitted values for ILIt+1 from each of the k models estimated are the reported forecasts.

The forecasts are plotted in Figure 4.8, and the MSEs are reported in Table 4.5. The forecasts

produced by Autometrics are noticeably less accurate than the nowcasts. The Lasso performs

nearly as well at forecasting as it does at nowcasting. The average is better than both, Auto-

metrics and Lasso individually, though only marginally better than the Lasso.

73



ILI Fitted 

2015-2 3 4 5 6 7 8 9 10 11 12 2016-1 2

1

2

3

4 Autometrics
ILI Fitted 

ILI Fitted 

2015-2 3 4 5 6 7 8 9 10 11 12 2016-1 2

1

2

3

4 Lasso
ILI Fitted 

ILI Average 

2015-2 3 4 5 6 7 8 9 10 11 12 2016-1 2

1

2

3

4 Average

ILI Average 

Figure 4.8: Forecasts produced by Autometrics, Lasso, and their average.

MSE Selected Variables
Autometrics 0.032 41

Lasso 0.018 22
Average 0.016

Table 4.5: MSEs from forecasting

4.3.6 Original Google Flu Trends Estimates

Since its inception in 2008, the Google Flu Trends model has been updated three times, most

recently in 2014. While Google has never released the algorithm it used to compute its ILI

estimates, the estimates themselves are available. It has also released the estimates that the

revised models produce when applied to historical data.4. An interesting exercise is then to see

how these estimates compare to the estimates produced using the algorithms studied here.

Figure 4.9 graphs the nowcasts produced by Google’s 2014 model, for the period January

24, 2010 until October 19 2015 which is the last estimate available.5 Note that it is not clear

4ILI estimates from all versions of the Google Flu Trend algorithm can be downloaded from https://www.

google.org/flutrends/about/
5The estimates in this graph were downloaded on March 21st from https://www.google.org/flutrends/

about/data/flu/historic/us-historic-v3.txt
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Figure 4.9: Nowcasts for 2010-2015 using Google’s 2014 model

whether these are in-sample or out-of-sample nowcasts. The nowcast MSE over this period

is 0.021, which is larger than the in-sample MSEs for Autometrics, Lasso and BSTS, and the

out-of-sample nowcast MSEs produced by Autometrics and the Lasso.

4.4 Selecting the Significance Level for Autometrics

The accuracy of the nowcasts and forecasts produced by the three different algorithms has been

measured by the MSE, which measures how close the predictions and true values are. Clearly,

this is a very different way to evaluate the algorithms than the gauge, potency and MSE measures

which were used in Chapter 3. When using Autometrics there is strong relationship between

the chosen significance level α and the inclusion of irrelevant variables. Approximately 100(α)%

of the irrelevant variables present in the GUM are in the model selected by Autometrics. The

selection of relevant variables is also influenced by α; a higher α means a lower critical value

cα which leads to more relevant variables selected. Therefore, when selecting α there exists a

tradeoff between setting a low α and excluding most of the irrelevant variables and retaining

fewer of the relevant variables, or selecting a high α, and retaining most relevant variables, while

simultaneously retaining many irrelevant variables. When the goal of using Autometrics is model

selection, the consensus is that setting α very low is preferable. However when the goal is not

model selection but is instead forecasting, setting a higher α could produce better results. This

is due to the fact that in the prediction arena, it is sometimes more costly to exclude relevant

variables than it is to retain irrelevant variables. There is a long debate over parsimony versus
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robustness and it is far from settled, but given that excluding relevant variables is perhaps more

costly than including irrelevant variables, it seems sensible to entertain the idea that higher

values of α could improve nowcasts and forecasts generated by Autometrics. Out-of-sample

nowcasts and forecasts were reproduced with this in mind, using the out-of-sample nowcasting

and forecasting methods as previously explained, with various values of α. The MSE results for

the recalculated nowcasts are reported in Table 4.6, and results for the recalculated forecasts are

reported in Table 4.7. Averages calculated using the updated nowcasts and forecasts are also

reported. Both the nowcasts and forecasts produced by Autometrics generally improve with the

higher levels of significance.

α Autometrics Average Variables Selected
0.01 0.016 0.005 33
0.05 0.018 0.005 59
0.10 0.012 0.008 62
0.15 0.012 0.005 91
0.20 0.012 0.006 92

Table 4.6: Nowcast MSEs for various levels of α

α Autometrics Average Variables Selected
0.01 0.032 0.016 41
0.05 0.025 0.014 48
0.10 0.015 0.009 73
0.15 0.017 0.012 140
0.20 0.007 0.008 161

Table 4.7: Forecast MSEs for various levels of α

4.5 Nowcasting Takeaways

As this chapter shows, nowcasting is an interesting, relevant and useful application of automatic

model selection and depending on the complexity of the algorithm, it can also be employed very

easily. As the way that economic data is collected begins to change, and as it starts to become

available in real-time, automatic model selection for nowcasting could become a useful tool for

economics, statistical agencies and policy makers alike.
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Chapter 5

Conclusion

Automatic model selection algorithms have the potential to assist economic researchers a great

deal. As the big data revolution starts to play a more integral role in economic research, al-

gorithms like Autometrics, the Lasso and BSTS will become more mainstream. The results of

this thesis demonstrate that while the three algorithms have broadly the same goal of selecting

a sparse model from a much more general model, the properties of each algorithm vary. Of par-

ticular relevance to the results is the correlation structure of the DGP. Because empirically the

structure of the DGP is impossible to know it should be viewed unfavourably if an algorithm’s

properties depend on a particular correlation structure.

This thesis began by first outlining the theory behind the three different algorithms studied.

Then, results from simulations conducted across three different correlation structures were pre-

sented individually. Within each of these three sets of simulations, different non-centralities for

the relevant variable were tested. Also examined was the impact of including more variables than

observations in the initial GUM. Algorithms were compared to each other and against a bench-

mark to examine the costs of search and costs of inference. Finally the results across different

correlation structures were analyzed.

Of the three algorithms studied, Autometrics was found to be by the far the most consistent

across correlation structures. The Lasso’s results vary a great deal depending on the correlation

structure and the non-centralities of the relevant variables. This makes it difficult to describe

the general properties of a model the Lasso selects. BSTS selects very sparse models overall,

with the properties of the selected model dependent on the correlation structure as well. The

number of candidate variables did not seem to matter in any of the algorithms; that is in most

simulations, each algorithm was just as effective when the number of variables exceeded the

number of observations.

A nowcasting application of automatic model selection was then considered, where each

of the algorithms was used to nowcast the incidence of the flu in the United States, using

information from Google search queries. All three algorithms generated very good in-sample
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nowcasts. The out-of-sample nowcasts were also very accurate. Autometrics and the Lasso were

also used to try to forecast the flu, with success. The results were compared to actual Google Flu

Trends estimates, and were shown to be even more accurate. The results in this section suggest

that nowcasting and forecasting may be a profitable application of automatic model selection

algorithms. However given that the goal of nowcasting is to minimize predictive error, more work

needs to be done to understand the best way to use automatic model selection in the nowcasting

arena.

The research presented in this thesis has demonstrated that if economists wish is to effectively

and appropriately take advantage of the new tools for big data like the ones presented here, it

is essential they do their research. The results demonstrate that not all algorithms are created

equally, and that choosing one technique over another can have a significant impact on results.

That said, the results in this thesis suggest that Autometrics is a promising, consistent and

reliable algorithm and has the potential to greatly simplify the work of empirical researchers.
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